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Abstract

General methods have been developed for esti-
mating causal effects from observational data un-
der causal assumptions encoded in the form of
a causal graph. Most of this literature assumes
that the underlying causal graph is completely
specified. However, only observational data is
available in most practical settings, which means
that one can learn at most a Markov equivalence
class (MEC) of the underlying causal graph. In
this paper, we study the problem of causal es-
timation from a MEC represented by a partial
ancestral graph (PAG) - learnable by structural
learning algorithms. We develop a general esti-
mator for any identifiable causal effects in PAGs.
The result fills a gap for an end-to-end solution to
causal inference from observational data to effects
estimation. Specifically, we develop a complete
identification algorithm that derives an influence
function for any identifiable causal effects in a
PAG. We then construct a double/debiased ma-
chine learning (DML) estimator that is robust to
model misspecification and biases in nuisance
function estimation, permitting the use of modern
machine learning techniques. Simulation results
corroborate with the theory.
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1. Introduction

Inferring causal effects from observational data is a fun-
damental task in machine learning and various empirical
sciences. There exists a growing literature studying the con-
ditions under which causal conclusions can be drawn from
non-experimental data (Pearl, 2000; Bareinboim & Pearl,
2016; Pearl & Mackenzie, 2018). In particular, the literature
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of causal effect identification (Pearl, 2000, Def. 3.2.4) inves-
tigates whether, given a causal graph G encoding qualitative
knowledge about the domain, an interventional distribution
P (Y = y|do(X = x)) (for short, Px(y)), representing the
causal effect of the treatment X on the outcome Y , can be
uniquely inferred from the observational distribution P (V )
(Pearl, 1995; Tian & Pearl, 2003; Huang & Valtorta, 2006;
Shpitser & Pearl, 2006; Lee & Bareinboim, 2020). There
is also a large literature on estimating causal effects from
finite samples drawn from P (V ) when the corresponding
causal estimand is in the form of covariate adjustment (or
its sequential variants) (Rosenbaum & Rubin, 1983; Pearl
& Robins, 1995; Robins et al., 2000; Bang & Robins, 2005;
Van Der Laan & Rubin, 2006; Hill, 2011), including dou-
bly robust estimators for addressing model misspecification
(Robins et al., 1994; Bang & Robins, 2005; Van Der Laan
& Rubin, 2006; Rotnitzky & Smucler, 2020; Smucler et al.,
2020; Fulcher et al., 2020). Recently, machine learning
(ML) based methods have been developed for estimating
any causal effects from finite samples whenever they are
identifiable given a causal graph (Jung et al., 2020a;b; 2021).

Despite the power of these results, their applicability is con-
tingent upon one having a causal graph, which may be hard
to mannually specify. In practical settings, one may attempt
to learn the causal graph using structural learning algorithms
from the available observational data (Pearl, 2000; Spirtes
et al., 2000; Peters et al., 2017). Still, in principle, only a
Markov equivalence class (MEC) of the underlying causal
graph can be inferred from non-experimental data (Spirtes
et al., 2000; Zhang, 2008b). There is a growing interest
in causal identification in MECs (Zhang, 2008a; Perkovic
et al., 2017; Jaber et al., 2018a;b). In particular, a complete
algorithm (named IDP) has recently been developed for
identifying causal effects in a MEC represented by a partial

ancestral graph (PAG) (Jaber et al., 2019). PAGs are learn-
able from data using causal structural learning algorithms
(e.g. FCI (Zhang, 2008b)),

Even though these are quite general results, it re-
mains an open challenge to estimate the resulting
causal expressions from finite samples. For con-
creteness, consider the PAG in Fig. 1 as an exam-
ple. The IDP algorithm identifies Px(y1, y2, y3, y4) =
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P (y4|y3, y2, y1, x, r)P (y1)
P

r P (y2, y3|x, r)P (r). The
only viable general-purpose method currently available
for estimating arbitrary causal estimands like this is the
“plug-in” estimators (Casella & Berger, 2002), which es-
timate each conditional probability in the estimand (e.g.,
P (y4|y3, y2, y1, x, r)), called nuisance functions or nui-

sances in short, often by assuming a parametric model, and
plug them into the equation. However, plug-in estimators
are vulnerable to model misspecification in that all nuisance
models need to be correctly specified for the estimator to
be consistent. They also often suffer from biases in estimat-
ing the nuisances. In recent years, it is common to learn
nuisance functions using highly flexible ML models, partic-
ularly in high-dimensional settings, including methods such
as random forests, boosted regression trees, and deep neural
networks. In practice, these ML methods inherently trade
off regularization bias with overfitting often causing acute
bias in the plug-in estimators of the target estimand such that
these estimators will not achieve desirable

p
N -consistency

(Chernozhukov et al., 2018), where N is the sample size.

We will exploit in this paper the double/debiased machine

learning (DML) framework proposed in (Chernozhukov
et al., 2018). This framework provides estimators that
achieve

p
N -consistency with respect to the target estimand

while admitting the use of highly flexible ML methods for
estimating the nuisances at a slower N

�1/4 rate conver-
gence (‘debiasedness’). DML has been applied in causal
inference in some specific settings, including in the con-
text of the backdoor/ignorability and instrumental variables
(Zadik et al., 2018; Syrgkanis et al., 2019; Foster & Syrgka-
nis, 2019; Chernozhukov et al., 2019; Kallus & Uehara,
2020; Farbmacher et al., 2020). Recently, DML has been
used for estimating causal effects when the causal graph is
fully specified (Jung et al., 2021).

Our goal will be to develop a general estimator for any iden-
tifiable causal effects in PAGs (when the causal graph is
unknown). In particular, we will develop a DML estimator
for identifiable causal effects in PAGs, named DML-IDP, by
deriving their influence functions (IF) based on the semipara-
metric theory (Van der Vaart, 2000). Our results fill in a gap
for a purely data-driven, end-to-end solution to causal effects
estimation, i.e., from observational data D = {V(i)}Ni=1 !
PAG G by structure learning algorithm ! identifiability of
target effect Px(y) by IDP ! estimating Px(y) from D by

DML-IDP. Specifically, our contributions are as follows:

1. We develop a complete systematic procedure that de-
rives an IF for any identifiable causal effects in a PAG.

2. We develop a DML estimator (DML-IDP) for any
identifiable causal effects in a PAG, which enjoy debiased-
ness and doubly robustness against model misspecification
and biases in nuisances estimation. Experimental studies
corroborate with the theory.

X

Y1

Y4

R

Y2

Y3v v

v

v

v

Figure 1: An example PAG. Nodes representing the treat-
ment (X) and outcome (Y) are marked in blue and red
respectively. Causal effect Px(y) is identifiable.

The proofs are provided in Appendix B in suppl. material.

2. Preliminaries

Each variable is represented with a capital letter (X) and
its realized value with the small letter (x). We use bold
letters (X) to denote sets of variables. We use Iv0(V) to
represent the indicator function such that Iv0(V) = 1 if and
only if V = v

0; Iv0(V) = 0 otherwise. For function f(v)
and a distribution P (v), EP [f(V)] ⌘

P
v f(v)P (v), and

kf(V)k2 ⌘
p
EP [(f(V))2]. bf is said to converge to f at

rate rN if k bf(V)� f(V)k2 = oP (1/rN ).

Structural Causal Models. We use the language of struc-
tural causal models (SCMs) as our basic semantical frame-
work (Pearl, 2000). Each SCM M over a set of variables V
induces a distribution P (v) and a causal graph G that is a
directed acyclic graph (DAG) with birected arrows where
solid-directed arrows encode functional relationships be-
tween observed variables, and bidirected arrows encode
unobserved latent variables. Within the structural semantics,
performing an intervention and setting X = x is represented
through the do-operator, do(X = x), which encodes the op-
eration of replacing the original equations of X by the con-
stant x and induces a submodel Mx and an interventional
distribution P (v|do(x)) ⌘ Px(v).

Partial Ancestral Graphs (PAGs). Given non-
experimental data, only a Markov equivalence class (MEC)

of the underlying causal graph can be inferred that includes
a set of graphs with the same conditional independences
(Zhang, 2007). A PAG provides a graphical representation
of a MEC. PAGs may contain directed (!) or bidirected
($) edges, representing ancestral relations, and edges with
circles (e.g., {�!, ���}) indicating structural uncertainty
(see Figs. 1 and 2 for example PAGs).

Given a PAG, a path between X and Y is potentially di-

rected from X to Y if there is no arrowhead {<,>} on the
path pointing towards X . Y is called a possible descendant

of X and X a possible ancestor of Y and denoted X 2
An(Y ) if there is a potentially directed path from X to Y .
Y is called a possible child of X and denoted Y 2 Ch(X),
and X a possible parent of Y and denoted X 2 Pa(Y ),
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if they are adjacent and the edge is not into X . By stipu-
lation, X 2 An(X), X 2 Pa(X), and X 2 Ch(X). For
a set of nodes X, we have Pa(X) =

S
X2X Pa(X) and

Ch(X) =
S

X2X Ch(X). If the edge marks on a path
between X and Y are all circles, we call the path a circle
path. We refer to the closure of nodes connected with circle
paths as a bucket. Nodes V in a PAG G are partitioned
into a unique set of buckets V =

Sn
i=1 Bi. There exists

a topological order over buckets B1 � · · · � Bn that de-
fines a partial order over V, which is valid in all the causal
graphs in the MEC. This is named a partial topological

order (PTO) and could be assigned by (Jaber et al., 2018a,
Algo. 2). Given a PTO � and a set C ✓ V, we denote
preC(Bi) ⌘ (

S
j<i Bj)\C and use pre(Bi) ⌘ preV(Bi).

An inducing path is a path on which every node Vi (except
for the endpoints) is a collider on the path and every collider
is an ancestor of an endpoint. A directed edge X ! Y in a
PAGis visible and denoted X

v! Y if there exists no causal
graph in the corresponding MEC where there is an inducing
path between X and Y that is into X . Given a PAG G and a
set C ✓ V, G(C) denotes the subgraph composed of nodes
C and edges therein.

Causal Effect Identification. Given a DAG G over V, an
effect Px(y) where X,Y ✓ V is identifiable if Px(y) is
computable from the distribution P (v) in any SCM that
induces G (Pearl, 2000, p. 77). One key notion is called
confounded components (for short, C-component) : clo-
sures of nodes connected with a path composed solely of
bi-directed edges Vi $ Vj (Tian & Pearl, 2002).

Given a PAG G over V, a query Px(y) is identifiable if and
only if Px(y) is identifiable with the same expression in
every DAG in the MEC represented by the PAG G. A com-
plete identification algorithm in PAGs called IDP has been
developed (Jaber et al., 2019) (also presented in Appendix A
for convenience) based on possible C-component (PC-
component) and definite C-component (DC-component):
Definition 1 (PC & DC-component (Jaber et al., 2018a)).
In a PAG (or its subgraph), two nodes are in the same PC-

component if there is a path between them s.t. (1) all non-
endpoint nodes along the path are colliders, and (2) none
of the edges is visible. Two nodes are in the same DC-

component if they are connected with a bi-directed path.

For a set of variables X, we will use C(X) to denote the
union of the PC-components that contain variables in X.
For any C ✓ V, the quantity Q [C] ⌘ Pv\c(c), called a
C-factor, is defined as the distribution of C under an inter-
vention on V\C. IDP algorithm is based on the following
results for identification and decomposition of C-factors.
Proposition 1 ((Jaber et al., 2018b)). Let G be a PAG over

V, T = [m
i=1Bi be the union of a set of buckets, and

X ✓ T be a bucket. Given Pv\t (i.e., Q [T]) and a PTO

B1 � · · · � Bm with respect to G(T), Q [T\X] is identi-

fiable if and only if C(X) \ Ch(X) ✓ X in G(T). If iden-

tifiable, then Q [T\X] =
Pv\t
QSX

P
x QSX , where QSX ⌘

Q
i|Bi✓SX

Pv\t(bi|preT(bi)) and SX =
S

X2X SX with

SX being the DC-component of X in G(T).

Definition 2 (Region RC
A (Jaber et al., 2019)). Given a

PAG G over V and A ✓ C ✓ V, the region of A w.r.t.
C, denoted RC

A, is the union of the buckets in G(C) that
contain nodes in the PC-component C(A) of A in G(C).

Proposition 2 ((Jaber et al., 2019)). Given a PAG G over

V and a set C ✓ V, Q [C] can be decomposed as Q [C] =
Q[RA]·Q[RC\RA ]
Q[RA\RC\RA ]

for any A ✓ C, where R(·) = RC
(·).

Semiparametric Theory. We aim to estimate a target
estimand  ⌘  (P ) that is a functional of P (V) (e.g.,
 (P ) =

P
z P (y|x, z)P (z)) from finite samples D =

{V(i)}Ni=1 drawn from P . Let a parametric submodel

Pt ⌘ P (v)(1 + tg(v)) for any t 2 R and bounded mean-
zero function g(·) over random variables V. If a func-
tional  (Pt) is pathwise (formally, Gâteaux) differentiable
at t = 0, then there exists a function �(V; , ⌘) (shortly
�), called an influence function (IF) for  , where ⌘ = ⌘(P )
stands for the set of nuisance functions comprising �, sat-
isfying EP [�] = 0, EP

⇥
�
2
⇤
< 1, and @

@t (Pt)|t=0 =
EP [�(V; , ⌘)St(V; t = 0)] where St(v; t = 0) ⌘
@
@t logPt(v)|t=0 is the score function (Van der Vaart, 2000,
Chap. 25). Given an IF �, a Regular and Asymptotic
Linear (RAL) estimator TN can be constructed satisfying
TN �  = 1

N

PN
i=1 �(V(i); , ⌘) + oP (N�1/2). When

the IF can be decomposed as �(V; , ⌘) = V(V; ⌘) �  

for some function V(V; ⌘), called the uncentered influ-

ence function (UIF), the corresponding RAL estimator is
TN = 1

N

PN
i=1 V(V(i), b⌘) where b⌘ denotes nuisances es-

timated from sample D (Kennedy, 2020a). We will fo-
cus on deriving UIFs in this paper. Once we have a UIF
the corresponding IF could be expressed as �(V; , ⌘) =
V(V; ⌘)� EP [V(V; ⌘)].

Double/Debiased Machine Learning (DML). DML meth-
ods (Chernozhukov et al., 2018) are based on two ideas: (1)
use a Neyman orthogonal score

1 to estimate the target  ,
and (2) use cross-fitting

2 to construct the estimator. DML
estimators guarantee

p
N -consistency even when the esti-

mates b⌘ of (possibly high-dimensional) nuisance functions
converge at a much slower N�1/4 rate (‘debiasedness’), al-
lowing the use of a broad array of modern ML methods that
do not meet certain smoothness/complexity restrictions (i.e.,
Donsker class). Neyman-orthogonal scores may coincide
with IFs - a fact we exploit in this paper.

1A Neyman orthogonal score is a function � satisfying
EP [�(V; , ⌘⇤)] = 0 and @

@⌘EP [�(V; , ⌘)]|⌘=⌘⇤ = 0, where
⌘⇤ denotes the true nuisance.

2The cross-fitting technique uses distinct sets of samples in
model training and estimator’s evaluation.
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3. IFs for Canonical Expressions

Before deriving IFs for any identifiable causal effects in
PAGs, in this section, we derive IFs for two typical func-
tionals that often appear in the expressions of causal effects,
called here canonical expressions.

3.1. Canonical expression 1

Definition 3 (Canonical expression 1 (CE-1)). Let T =
{B1 < · · · < Bn} be a set of ordered sets3. Let C ✓ T

and A be a subset of variables contained in C. A quantity
Q is said to be (in the form of) a canonical expression 1

(CE-1) if it is in the following form:

Q =
X

a

Y

Bi2C

P (bi|preT(bi)). (1)

For concreteness, we show the causal effect Px(y) (for
X = {X1, X2}) in the PAG in Fig. 2a can be expressed as
a CE-1 as follows:

Given a PTO V = {C � B � A � X1 � Z �
X2 � Y }, we have Q[V \ X2] is identifiable from
Q[V] = P (V) by Prop. 1 as X2 is a bucket satisfying
C(X2) \ Ch(X2) = {X2} and SX2 = {X2}, and we ob-
tain Q[V \X2] = Px2(v \ x2) = P (v)/P (x2|pre(x2)) =
P (y|pre(y))P (pre(x2)). For T ⌘ V\{X2}, Q[T \ X1]
is identifiable from Q[T] by Prop. 1 as X1 is
a bucket satisfying C(X1) \ Ch(X1) = {X1}
and SX1 = {X1}, and we obtain Q[T \ X1] =
Px1,x2(t\{x1}) = Px2(t)/Px2(x1|preT(x1)) =
P (y|pre(y))P (z|pre(z))P (a, b, c) by the equality
Px2(x1|preT(x1)) = P (x1|preT(x1)). Finally, the
causal effect Px(y) is given as a CE-1 as:

Px(y) =
X

z,a,b,c

P (y|pre(y))P (z|pre(z))P (a|b, c)P (b|c)P (c).

(2)

We derive an IF for functionals in the form of CE-1 as
follows:
Lemma 1 (UIF for CE-1). Let a target estimand  = Q
be a CE-1 given by Eq. (1) in Def. 3. Let Y ⌘ C\A,

and X ⌘ T \ C ⌘ {Bj1 < · · · < Bjm} where

Bjs 2 T. Let C be partitioned with respect to X as

C =
Sm

k=0 Ck, where Ck ⌘ {Br 2 C : jk < r <

jk+1} ⌘ {Bkmin < · · · < Bkmax} with j0 ⌘ 0 and

jm+1 ⌘ n + 1. Let P⇡ be a distribution over T given by

P⇡ ⌘ Ix(X)
Q

Bi2C P (Bi|preT(Bi)). Then, V(T; ⌘ =
(!,✓)) in the following is a UIF for  :

V(T; ⌘ = (!,✓)) = ✓0,1 +
mX

k=1
Ck 6=;

!k (✓k,1 � ✓k,2) , (3)

3We use W = {B1 < · · · < Bk} to denote a set of
ordered sets W = {B1, · · · ,Bk} or a union of ordered sets
W = [k

i=1Bi depending on the context.
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v

v

v

v
v
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Figure 2: Example PAGs. Causal effects Px(y) are identifi-
able and given by (a) CE-1, (b) CE-2.

where ! ⌘ {!k| Ck 6= ;, k 2 {1, · · · ,m}} and

✓ ⌘ {✓0,1} [ {(✓k,1, ✓k,2)| Ck 6= ;, k 2 {1, · · · ,m}}
are nuisances given by !k ⌘

Qk
r=1

Ibjr
(Bjr )

P (Bjr |preT(Bjr ))
,

✓k,1 ⌘ EP⇡ [Iy(Y)|Bkmax , preT(Bkmax)], ✓k,2 ⌘
EP⇡ [Iy(Y)|preT(Bkmin)] where ✓0,1 = EP⇡ [Iy(Y)] if

C0 = ;.

For concreteness, we apply Lemma 1 to derive a UIF for
 ⌘ Px1,x2(y) in Fig. 2a which is identified as a CE-1 given
in Eq. (2).
Illustration 1 (UIF for Px1,x2(y) in Fig. 2a). Let T =
{C � B � A � X1 � Z � X2 � Y }, C = {C �
B � A � Z � Y }, and X = {X1 � X2}. We have

C0 = {C � B � A}, C1 = {Z}, and C2 = {Y }. Then

Lemma 1 gives a UIF for  as

VPx(y) = ✓0,1 + !1 (✓1,1 � ✓1,2) + !2 (✓2,1 � ✓2,2) , (4)

where !1 =
Ix1 (X1)

P (X1|pre(X1))
, !2 =

Ix1,x2 (X1,X2)
P (X1|pre(X1))P (X2|pre(X2))

; for P⇡ ⌘
Ix1,x2(X1, X2)P (A,B,C)P (Z|pre(Z))P (Y |pre(Y )),
✓0,1 = EP⇡ [Iy(Y )|pre(X1)], ✓1,1 = EP⇡ [Iy(Y )|pre(X2)],
✓1,2 = EP⇡ [Iy(Y )|pre(Z)]; and ✓2,1 = EP⇡ [Iy(Y )|T] =
Iy(Y ) and ✓2,2 = EP⇡ [Iy(Y )|pre(Y )].

3.2. Canonical expression 2

Definition 4 (Canonical expression 2 (CE-2)). Let Q1

and Q2 be two CE-1s, then the quantity Q =P
z (Q1 ⇥Q2) is said to be (in the form of) a

canonical expression 2 (CE-2).

A broad class of causal effects are identified as a CE-2,
including all joint interventional distributions (Px(v)) when
X is singleton (Jaber et al., 2018b, Thm. 1), as well as in
the following scenario which follows from Prop. 1:
Corollary 1. Let a PTO in PAG G over V be B1 � · · · �
Bm. Let X,Y ⇢ V with X being a bucket. Then, if

C(X) \ Ch(X) ✓ X, Px(y) is identifiable and given by

Px(y) =
X

v\(x[y)

QV\SX
⇥QSX\X, (5)
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where QV\SX
⌘

Q
Bi✓V\SX

P (bi|pre(bi)), QSX\X ⌘P
x

Q
Bi✓SX

P (bi|pre(bi)), and SX =
S

X2X SX with

SX being the DC-component of X .

Eq. (5) is a CE-2 where QV\SX
and QSX\X are CE-1s. As

a concrete example, consider the PAG in Fig. 2b with a PTO
V = {C � X � Y1 � Y2 � Y3 � Y4 � Y5}. Since
X is a bucket and satisfies C(X) \ Ch(X) = {X} with
C(X) = {X,C, Y1, Y4, Y3} and Ch(X) = {X,Y2}, the
causal effect Px(y) where Y = {Y1, · · · , Y5} is identifiable
by Coro. 1 and given by

Px(y) =
X

c

QV\SX
QSX\X , (6)

where SX = {X,Y1, Y3, Y4}, V\SX = {C, Y2, Y5},
QV\SX

⌘ P (y5|pre(y5))P (y2|pre(y2))P (c), and
QSX\X ⌘

P
x0 P (y3, y4|y1, y2, x0

, c)P (y1, x0|c).

We derive an IF for CE-2 as follows:

Lemma 2 (UIF for CE-2). Let a target estimand  = Q
be a CE-2 given in Def. 4. Let Vi be a UIF for the CE-1 Qi

given in Lemma 1 and µi ⌘ EP [Vi] for i 2 {1, 2}. Then,

V(V; ⌘) below is a UIF for  :

V(V; ⌘) =
X

z

(V1µ2 + (V2 � µ2)µ1). (7)

Lemma 2 provides a UIF for any causal effects that are
identifiable by Coro. 1. For a concrete example, we will
use Lemma 2 to derive a UIF for  ⌘ Px(y) in Fig. 2b
identified by Coro. 1 as given in Eq. (6).

Illustration 2 (UIF for Px(y) in Fig. 2b). A UIF for Px(y)
in Eq. (6) is given by Lemma 2 as

VPx(y) =
X

c

�
VV\SX

µSX\X + (VSX\X � µSX\X)µV\SX

�
,

(8)

where VV\SX
is a UIF for QV\SX

and, by Lemma 1, is

given with V = {C � X � Y1 � Y2 � Y3 � Y4 � Y5} as

VV\SX
= ✓

a
0,1 + !

a
1 (✓

a
1,1 � ✓

a
1,2) + !

a
2 (✓

a
2,1 � ✓

a
2,2),

where !
a
1 =

Ix,y1 (X,Y1)
P (X|C)P (Y1|X,C) and !

a
2 =

!
a
1 ⇥ Iy3,y4 (Y3,Y4)

P (Y3|pre(Y3))P (Y4|pre(Y4))
; and for P⇡a ⌘

Ix,y1,y3,y4(X,Y1, Y3, Y4)P (C)P (Y2|pre(Y2))P (Y5|pre(Y5))
and I

a ⌘ Ic,y2,y5(C, Y2, Y5), ✓
a
0,1 = EP⇡a [Ia|C],

✓
a
1,1 = EP⇡a [Ia|Y2, pre(Y2)], ✓a1,2 = EP⇡a [Ia|pre(Y2)],
✓
a
2,1 = I

a
, and ✓

a
2,2 = EP⇡a [Ia|pre(Y5)].

Also, VSX\X is a UIF for QSX\X and is given by Lemma 1

as VSX\X = ✓
b
0,1 + !

b
1(✓

b
1,1 � ✓

b
1,2) + !

b
2(✓

b
2,1 � ✓

b
2,2),

where !
b
1 = Ic(C)

P (C) and !
b
2 = !

b
1 ⇥ Iy2 (Y2)

P (Y2|pre(Y2))
; and

for P⇡b ⌘ Ic,y2(C, Y2)P (Y3, Y4|pre(Y3))P (X,Y1|C) and

I
b ⌘ Iy1,y3,y4(Y1, Y3, Y4), ✓b0,1 = EP⇡b [I

b], ✓b1,1 =

EP⇡b [I
b|Y1, pre(Y1)], ✓b1,2 = EP⇡b [I

b|pre(X)], ✓b2,1 = I
b
,

and ✓
b
2,2 = EP⇡2 [I

b|pre(Y3)].

Finally µV\SX
⌘ EP [VV\SX

], and µSX\X ⌘ EP [VSX\X].
Refer Appendix A for derivation details.

4. IFs for Causal Estimands

In this section, we derive IFs for any identifiable causal ef-
fects in PAGs, armed with IFs for the canonical expressions
discussed in the previous section. We develop a complete
algorithm for deriving IFs by recursively deriving IFs of
C-factors Q[·] inspired by IDP algorithm (Jaber et al., 2019)
which recursively identifies C-factors by repeated applica-
tion of Prop. 1 or 2. We will first develop basic results for
deriving IFs of C-factors corresponding to Prop. 1 and 2.

Prop. 1 computes Q [T\X] in terms of given Q [T]. We first
rewrite Prop. 1 in a form more amenable for the purpose of
deriving IFs:
Lemma 3. Let G be a PAG over V, T = [m

i=1Bi be the

union of a set of buckets, and X ✓ T be a bucket. Given

Q[T] and a PTO B1 � · · · � Bm with respect to G(T),
Q [T\X] is identifiable if and only if C(X) \ Ch(X) ✓ X

in G(T). When Q [T\X] is identifiable, letting SX =S
X2X SX with SX being the DC-component of X in

G(T), then SX consists of a union of buckets. Denot-

ing SX = {Bj1 , · · · ,Bjp} and T\SX = {Bi1 , · · · ,Biq},

Q [T\X] is given by

Q [T\X] = QT\SX
⇥QSX\X, (9)

where QT\SX
⌘

Q
Bir2T\SX

Pv\t(bir |preT(bir )), and

QSX\X ⌘
P

x

Q
Bjs2SX

Pv\t(bjs |preT(bjs)).

For any W ✓ V, we will use �Q[W] to denote an IF for
the C-factor Q[W], VQ[W] the corresponding UIF, and
µQ[W] ⌘ EP [VQ[W]]. We derive an IF for Q [T\X] that is
identified by Lemma 3 in terms of VQ[T] as follows:
Lemma 4 (IF of C-factors). Suppose  ⌘ Q [T\X] is

identifiable via Lemma 3 and given by Eq. (9). Then, given

VQ[T], V ⌘ VQ[T\X] below is a UIF for  :

V = VSX\XµVT\SX
+ (VT\SX

� µVT\SX
)µSX\X, (10)

where (VSX\X,VT\SX
) are UIFs for (QSX\X,QT\SX

) re-

spectively, given by

VSX\X ⌘
X

x

(Vj1

pY

k=2

µjk +
pX

k=2

�jk

pY

`=1,` 6=k

µj`),

VT\SX
⌘ Vi1

qY

r=2

µir +
qX

r=2

�ir

qY

`=1,` 6=r

µi` ,

where, for c 2 {1, 2, · · · ,m}, Vc ⌘
P

t\{bc,preT(bc)} VQ[T]P
t\preT(bc)

µQ[T]
�
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P
t\{bc,preT(bc)} µQ[T]P

t\preT(bc)
µQ[T]

·
P

t\preT(bc)
�Q[T]P

t\preT(bc)
µQ[T]

, µc ⌘ EP [Vc], and

�c ⌘ Vc � µc.

The following lemma derives an IF for the C-factor Q[C]
from the IFs of C-factors over some subsets of C, corre-
sponding to the C-factor decomposition in Prop. 2.

Lemma 5 (Decomposition of IFs). For A ✓ C ✓ V,

VQ[C] = (a) + (b)� (c), (11)

where (a) =
VQ[RA]·µQ[RC\RA

]

µQ[RA\RC\RA
]

, (b) =
µQ[RA]·�Q[RC\RA

]

µQ[RA\RC\RA
]

,

(c) =
µQ[RA]·µQ[RC\RA

]

µQ[RA\RC\RA
]

·
�Q[RA\RC\RA

]

µQ[RA\RC\RA
]

with R(·) = RC
(·).

Finally, we develop a systematic procedure named IFP,
given in Algo. 1, that derives a UIF for any identifiable
causal effect in PAGs. IFP recursively applies Lemmas 4
and 5 until all needed C-factors are in CE-1 or CE-2 form,
whose UIFs are given by Lemma 1 and 2, respectively, ini-
tially equipped with a UIF for P (v), VQ[V] = Iv(V).

Theorem 1 (Completeness of IFP). Procedure IFP

(Algo. 1) derives a UIF for any identifiable Px(y) in a

PAG G over V in O(|V|4) time, where |V| is the number

of variables. IFP returns FAIL if Px(y) is not identifiable.

For concreteness, we demonstrate the application of
IFP by deriving a UIF for  = Px(y), where Y ⌘
{Y1, Y2, Y3, Y4}, in the PAG in Fig. 1.
Illustration 3 (UIF for Px(y) in Fig. 1 by IFP).
We start with D ⌘ Y (Line 3) and VPx(y) =
DERIVEUIF(D,V, P (V),VQ[V] = Iv(V)) (Line 4).

DERIVEUIF() reaches line 14, where B0 ⌘ {Y2} satisfies

the condition with RB0 = {Y2, Y3}, RD\RB0
= {Y1, Y4},

and RB0 \ RD\RB0
= ;. Then, line 15 gives (using

ID(;) = 1 and IF(;) = 0)

VPx(y) = UIF(RB0) · ID(RD\RB0
) + IF(RD\RB0

) · ID(RB0).

Next we show a sketch derivation of UIF(RB0) =
DERIVEUIF(RB0 ,V, P (V), Iv(V)). (Refer Appendix A

for details). UIF(RB0) is derived by repeating Lines

8, 9, 10, and 13 as follows: Starting with B = Y4

at Line 8, let T = V \ B = {Y1, R,X, Y2, Y3},

compute Q[T] (Line 9) and VQ[T] (Line 10), call

DERIVEUIF(RB0 ,T, Q[T],VQ[T]) (Line 13). Then repeat

the above by calling DERIVEUIF(RB0 ,T, Q[T],VQ[T])
three more times with B = Y1 at line 8, T =
{R,X, Y2, Y3}; B = X at line 8, T = {R, Y2, Y3};

and B = R at line 8, T = {Y2, Y3}. Finally we

obtain Q[RB0 ] = Q[Y2, Y3] =
P

r P (y2, y3|x, r)P (r),
and UIF(RB0) = VQ[RB0 ]

is given by Lemma 1 as

UIF(RB0) = ✓
a
0,1 + !

a
1 (✓

a
1,1 � ✓

a
2,1), where !

a
1 = Ix(X)

P (X|R) ;

and for P⇡a = Ix(X)P (Y2, Y3|X,R)P (R), ✓
a
0,1 =

Algorithm 1 IFP(x,y, G(V), P )

1: Input: Two disjoint sets X,Y ✓ V; A PAG G over V; A
distribution P (v).

2: Output: Expression for UIF VPx(y) or FAIL.
3: Let D = An(Y)G(V\X).
4: VPx(y) =

P
d\y DERIVEUIF

�
D,V, P (V),VQ[V] = Iv(V)

�

5: function DERIVEUIF (C,T, Q = Q [T] ,V = VQ)
6: if C = ;, then return 1.
7: if C = T, then return V .

{B denotes a bucket in G(T); C(B) the PC-component of

B in G(T), and R(·) ⌘ RC
(·).}

8: if 9B ✓ T\C s.t. C(B) \ Ch(B) ✓ B, then

9: Compute Q [T\B] from Q via Lemma 3.
10: if Q [T\B] is expressible as CE-1,

then, Compute VQ[T\B] via Lemma 1.
11: else if Q [T\B] is expressible as CE-2,

then, Compute VQ[T\B] via Lemma 2.
12: else, Compute VQ[T\B] via Lemma 4.
13: return DERIVEUIF

�
C,T\B, Q [T\B] ,VQ[T\B]

�
.

14: else if 9B ✓ C s.t. RB 6= C, then

15: return (a) + (b)� (c), where
{ Let UIF(W) = DERIVEUIF(W,T, Q,V); IF(W) =
UIF(W)� EP [UIF(W)]; ID(W) = EP [UIF(W)]}
(a) =

UIF(RB)·ID(RC\RB
)

ID(RB\RC\RB
) ; (b) =

IF(RC\RB
)·ID(RB)

ID(RB\RC\RB
) ;

(c) =
ID(RB)·ID(RC\RB

)

ID(RB\RC\RB
) ·

IF(RB\RC\RB
)

ID(RB\RC\RB
) .

16: else return FAIL.
17: end function

EP⇡a [Ia|R], ✓a1,1 = I
a
, and ✓

a
1,2 = EP⇡a [Ia|X,R] where

I
a ⌘ Iy2,y3(Y2, Y3).

UIF(RD\RB0
) = DERIVEUIF(RD\RB0

,V, P (V), Iv(V))
is derived in a similar manner. We obtain

Q[RD\RB0
] = Q[Y1, Y4] = P (y4|pre(y4))P (y1) for

PTO Y1 � R � X � Y2 � Y3 � Y4, and UIF(RD\B0
) =

✓
b
0,1+!

b
1(✓

b
1,1�✓b2,1) where !

b
1 =

Ir,x,y2,y3 (R,X,Y2,Y3)
P (R,X,Y2,Y3|Y1)

; and

for P⇡b = Ir,x,y2,y3(R,X, Y2, Y3)P (Y4|pre(Y4))P (Y1),
✓
b
0,1 = EP⇡b [I

b|Y1], ✓
a
1,1 = I

b
, and ✓

b
1,2 =

EP⇡b [I
b|pre(Y4)] where I

b ⌘ Iy1,y4(Y1, Y4).

For reference, Px(y) is identified as

Px(y) = Q[Y] = Q[Y2, Y3]Q[Y1, Y4], (12)

where Q[Y2, Y3] =
P

r P (y2, y3|x, r)P (r) and

Q[Y1, Y4] = P (y4|pre(y4))P (y1).

5. DML Estimators

In this section, we construct DML estimators for causal
effects Px(y) from finite samples D = {V(i)}Ni=1 based on
the UIF VPx(y)(V; ⌘) derived by IFP algorithm. The result-
ing DML estimators have nice properties of debiasedness,
as well as doubly robustness in the sense that an estimator
TN composed of the nuisances ⌘ = (⌘0, ⌘1) is said to be
doubly robust if TN is consistent whenever either ⌘0 or ⌘1
are consistent.
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First we show that IFs derived by IFP are a Neyman orthog-
onal score, which is needed for the DML method.

Proposition 3. Let Px(y) be identified as Px(y) =  ⌘
 (P ). Then, the IF �Px(y) = VPx(y) � EP [VPx(y)], where

VPx(y) is derived by Algo. 1 IFP, is a Neyman orthogonal

score for  .

A DML estimator for Px(y), named DML-IDP (DML esti-
mator for IDentifiable causal effects in PAGs), is constructed
according to (Chernozhukov et al., 2018) as follows:

Definition 5 (Double/Debiased Machine Learning esti-

mator for identifiable causal effects (DML-IDP)). Let
VPx(y)(V; ⌘) be the UIF given by Algo. 1 IFP for the target
functional  = Px(y). Let D = {V(i)}Ni=1 denote samples
drawn from P (v). Then, the DML-IDP estimator TN for
 = Px(y) is constructed as follows:
(1) Split D randomly into two halves: D0 and D1;
(2) For p 2 {0, 1}, use Dp to construct models for b⌘p, the
nuisance functions estimated from samples Dp; and
(3) TN ⌘

P
p2{0,1}

2
N

P
V(i)2Dp

VPx(y)(V(i), b⌘1�p).

To witness the robustness properties of DML-IDP, we first
note that the nuisances in VPx(y)(V; ⌘) returned by IFP
consist of the nuisances of UIFs for CE-1:

Lemma 6 (Nuisances of UIFs). The UIF VPx(y)(V; ⌘) re-

turned by Algo. 1 IFP is an arithmetic combination (ra-

tio, multiplication, and marginalization) of UIFs for func-

tionals in the form of CE-1, denoted as VPx(y)(V; ⌘ =
{!j ,✓j}`j=1) = A

�
{Vj(!j ,✓j)}`j=1

�
where Vj(!j ,✓j)

denotes a UIF given by Lemma 1 with !j = {!j,k}
mj

k=1 and

✓j = {✓j,0,1} [ {✓j,k,1, ✓j,k,2}
mj

k=1 being nuisances for Vj ,

and A(·) an arithmetic function.

For example, the UIF for Px(y) in Fig. 2b given by Eq. (8)
is a function of UIFs VV\SX

and VSX\X both of which are
given by Lemma 1 as shown in Illustration 2.

We show that DML-IDP estimators attain debiasedness and
doubly robustness, the main result of this section:

Theorem 2 (Properties of DML-IDP). Let TN be the

DML-IDP estimator of Px(y) defined in Def. 5 constructed

based on the UIF VPx(y)(V; ⌘ = {!j ,✓j}`j=1) where

!j = {!j,k}
mj

k=1 and ✓j = {✓j,0,1} [ {✓j,k,1, ✓j,k,2}
mj

k=1
are nuisances as specified in Lemma 6. Then,

1. Debiasedness: TN is

p
N -consistent and asymptoti-

cally normal if estimates for all nuisances converge to the

true nuisances at least at rate oP (N�1/4).

2. Doubly robustness: TN is consistent if, for every

j = 1, · · · , ` and k = 1, · · · ,mj , either estimates b!j,k

or (b✓j,k�1,1,
b✓j,k,2) converge to the true nuisances at rate

oP (1).

By Thm. 2, DML-IDP estimators attain root-N consistency
even when nuisances converge much slower at fourth-root-
N rate or when some nuisances are misspecified. These
properties allow one to employ flexible ML models (e.g.,
neural nets) that do not meet certain complexity restrictions
(e.g., Donsker condition) for estimating nuisances in esti-
mating causal effects. In contrast, plug-in estimators may
fail to achieve

p
N -consistency if estimates for nuisances

converges at oP (N�1/4) and are vulnerable to model mis-
specification.

For concreteness, we compare DML-IDP with plug-in esti-
mators in the following examples (Refer to Appendix A for
detailed derivations).
Illustration 4 (DML-IDP vs. Plug-in (PI) estima-

tors for Px(y) in Fig. (2a,2b,1)). By Thm. 2, DML-

IDP estimator for Px1,x2(y) in Fig. (2a) is consis-

tent if estimates for either {P (vi|pre(vi))}Vi2{X1,X2},

or {P (vi|pre(vi))}Vi2{X1,Y }, or {P (vi|pre(vi))}Vi2{Z,Y }
converge, while PI using Eq. (2) is consistent if estimates for

{P (y|pre(y)), P (z|pre(z)), P (a|b, c), P (b|c), P (c)} con-

verge, where the variables are ordered as C � B � A �
X1 � Z � X2 � Y .

DML-IDP estimator for Px(y1, y2, y3, y4, y5) in Fig. (2b)
is consistent if estimates {P (vi|pre(vi)}Vi2{X,Y1,Y3,Y4},

or {P (vi|pre(vi)}Vi2{X,Y1,Y5}, or

{P (vi|pre(vi)}Vi2{Y2,Y5}; and {P (vi|pre(vi))}Vi2{C,Y2},

or {P (vi|pre(vi))}Vi2{C,Y3,Y4}, or

{P (vi|pre(vi)}Vi2{X,Y1,Y3,Y4} converge, while

PI using Eq. (6) is consistent if estimates for

{P (vi|pre(vi))}Vi2V converge, where the order over

V is C � X � Y1 � Y2 � Y3 � Y4 � Y5.

DML-IDP for Px(y1, y2, y3, y4) in Fig. (1) is consistent if

estimates for P (x|r) or {P (y2|x, r), P (y3|y2, x, r)}; and

{P (vi|pre(vi))}Vi2{R,X,Y2,Y3} or P (y4|pre(y4)) converge,

while PI using Eq. (12) is consistent if estimates for

{P (y2|x, r), P (y3|y2, x, r), P (r), P (y4|pre(y4)), P (y1)}
converge, where Y1 � R � X � Y2 � Y3 � Y4.

6. Experiments

6.1. Experiments Setup

We evaluate DML-IDP for estimating Px(y) in
Fig. (2a,2b,1). We specify a SCM M for each PAG
and generate datasets D from M . Details of the models and
the data generating process are described in Appendix C.
Throughout the experiments, the target causal effect is
µ(x) ⌘ Px(Y = 1), with ground-truth pre-computed. We
compare DML-IDP with plug-in estimator (PI), the only
available general-purpose estimator working for arbitrary
causal functionals. Nuisance functions are estimated using
standard techniques available in the literature (refer to
Appendix C for details), e.g., conditional probabilities are
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Figure 3: MAAE Plots for (Top) Fig. 2a, (Middle) Fig. 2b, and (Bottom) Fig. 1, under scenarios ‘Debiasedness’ (‘DB’)
and ‘Doubly Robustness’ (‘DR-1’ and ‘DR-2’). Shades represent one standard deviation.

estimated using a gradient boosting model XGBoost (Chen
& Guestrin, 2016), which is known to be flexible.

Accuracy Measure Given a data set D with N sam-
ples, let bµDML(x) and bµPI(x) be the estimated Px(Y =
1) using DML-IDP and PI estimators. For each bµ 2
{bµDML(x), bµPI(x)}, we compute the average absolute er-
ror (AAE) as |µ(x)� µ̂(x)| averaged over x. We generate
100 datasets for each sample size N . We call the mean of
the 100 AAEs the mean average absolute error, or MAAE,
and its plot vs. the sample size N , the MAAE plot.

Simulation Strategy To show debiasedness (‘DB’) prop-
erty, we add a ‘converging noise’ ✏, decaying at a N

�↵

rate (i.e., ✏ ⇠ Normal(N�↵
, N

�2↵)) for ↵ = 1/4, to the
estimated nuisance values to control the convergence rate
of the estimators for nuisances, following the technique in
(Kennedy, 2020b). We simulate a misspecified model for
nuisance functions of the form P (vi|·) by replacing sam-
ples for Vi with randomly generated samples V 0

i , training
the model bP (v0i|·), and using this misspecified nuisance
in computing the target functional, following (Kang et al.,
2007).

6.2. Experimental Results

Debiasedness (DB) The MAAE plots for the debiasedness
experiments for Fig. (2a,2b,1) are shown in the first col-
umn of Fig. 3. DML-IDP shows the debiasedness property
against the converging noise decaying at N�1/4 rates, while
PI converges much slower for all three examples.

Doubly robustness (DR) The MAAE plots for the dou-

bly robustness experiments are shown in the 2nd and 3rd
columns of Fig. 3. Two misspecification scenarios are simu-
lated for each example based on the results in Illustration 4.
For Fig. 2a, nuisances { bP (vi|pre(vi))} for Vi 2 {Y, Z} in
‘DR-1’ and for Vi 2 {Z,X2} in ‘DR-2’ are misspecified.
For Fig. 2b, nuisances { bP (vi|pre(vi))} for Vi 2 {Y2, Y5}
in ‘DR-1’ and for Vi 2 {X,Y1, Y3, Y4} in ‘DR-2’ are mis-
specified. For Fig. 1, nuisances bP (y4|pre(y4)) in ‘DR-1’
and { bP (y2|x, r), bP (y3|y2, x, r)} in ‘DR-2’ are misspeci-
fied. The results in all the scenarios support the doubly
robustness of DML-IDP, whereas PI may fail to converge
when misspecification is present.

7. Conclusion

We derived influence functions (Algo. 1, Thm. 1) and de-
veloped DML estimators named DML-IDP (Def. 5) for any
causal effects identifiable given a Markov equivalence class
of causal graphs represented as a PAG. DML-IDP estima-
tors are guaranteed to have the property of debiasedness
and doubly robustness (Thm. 2). Our experimental results
demonstrate that these estimators are significantly more ro-
bust against model misspecification and slow convergence
rate in learning nuisances compared to the only alternative
estimator available in the literature, a plug-in estimator. We
hope the new machinery developed here will allow more
reliable and robust causal effect estimates by integrating
modern ML methods that are capable of handling complex,
high-dimensional data with causal learning and identifica-
tion theory, paving the way towards a purely data-driven,
end-to-end solution to causal effect estimation.
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