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Abstract

Learning systems often face a critical challenge
when applied to settings that differ from those un-
der which they were initially trained. In partic-
ular, the assumption that both the source/training
and the target/deployment domains follow the same
causal mechanisms and observed distributions is
commonly violated. This implies that the robust-
ness and convergence guarantees usually expected
from these methods are no longer attainable. In
this paper, we study these violations through causal
lens using the formalism of statistical transporta-
bility [Pearl and Bareinboim, 2011] (PB, for short).
We start by proving sufficient and necessary graph-
ical conditions under which a probability distribu-
tion observed in the source domain can be extrap-
olated to the target one, where strictly less data is
available. We develop the first sound and complete
procedure for statistical transportability, which for-
mally closes the problem introduced by PB. Fur-
ther, we tackle the general challenge of identifica-
tion of stochastic interventions from observational
data [Sec. 4.4, Pearl, 2000]. This problem has been
solved in the context of atomic interventions us-
ing Pearl’s do-calculus, which lacks complete treat-
ment in the stochastic case. We prove completeness
of stochastic identification by constructing a reduc-
tion of any instance of this problem to an instance
of statistical transportability, closing the problem.

1 Introduction

Generalizing causal and statistical findings across settings is
central in scientific inferences as well as in many applications
throughout artificial intelligence and machine learning. The
environment where the data is collected (source) is related to,
but almost never the same as, the one where the inferences
are intended (target). If the target environment is arbitrary,
or drastically different from the training (source) environ-
ment, no learning could take place. However, the fact that we
learn and perform relatively well in a new environment sug-
gest that certain environments share common characteristics
and that, owing to these commonalities, causal and statistical

claims would be valid and robust even in settings where no or
very little data is available [Pearl, 2000; Spirtes et al., 2001;
Bareinboim and Pearl, 2016; Pearl and Mackenzie, 2018].

Remarkably, the anchors of knowledge that allow extrapo-
lations to take place are eminently causal, following from the
stability of the mechanisms shared across settings [Aldrich,
1989]. The systematic analysis of these mechanisms and
the conditions under which extrapolations could be formally
justified has been studied in the literature under the rubric
of transportability theory [Pearl and Bareinboim, 2011]. A
number of results showed the robustness and efficiency of
transportability under a wide range of conditions [Bareinboim
and Pearl, 2012; Lee and Honavar, 2013a; Lee and Honavar,
2013b; Bareinboim and Pearl, 2013; Bareinboim and Pearl,
2014]; for a survey, refer to [Bareinboim and Pearl, 2016].

Despite all the progress achieved so far, most of these re-
sults were focused on the conditions under which causal dis-
tributions could be extrapolated, leaving a general class of
extrapolation problems without solution, namely, non-causal
distributions. In practice, on the other hand, many prob-
lems in Al and ML today, including classification and cluster-
ing, entail the learning of a (non-causal) probability distribu-
tions of the form P(y|x). In these settings, it’s also the case
that the training environment does not always match the one
where the classifier, for example, is intended to be deployed.
Depending on the differences between environments, the dis-
tribution P(yy|x) may not be a good predictor in the target
domain. The mismatches between the source and target envi-
ronments are due to the differences in the underlying causal
mechanisms and data-collection method.

Through the lens of causal reasoning, this setting has been
called statistical transportability in [Pearl and Bareinboim,
20111, dataset shift, or domain adaptation in [Quifionero-
Candela et al., 2009; Zhang et al., 2013; Zhang et al., 2015;
Magliacane et al., 2018; Rojas-Carulla et al., 2018]. The sta-
tistical transportability problem has been formalized but has
not been solved systematically nor in its non-parametric ver-
sion. For concreteness, consider the following example.

Example 1. An internet company stores records on the type
of advertisement displayed to its customers (X') and whether
the corresponding product was sold (Y) in its website 1I.
Each user’s age (W) is also measured, which affects both the
ad format (X)) as well as her/his propensity for buying the
product (Y). The distribution P(x,w,y) can be estimated



from this dataset. The company plans to expand to a dif-
ferent country II* and call the data science team to help to
predict Y given X, P*(y|x), in the new market. In trans-
portability theory, the differences in the causal mechanisms
across settings are encoded through square nodes (LJ), which
will be formally defined later on. The causal diagrams shown
in Fig. 1 entail different statistical patterns in the data when
comparing against the source, when
C1 the age distribution (P*(W)) is significantly different,
C2 the strategy to select the ad format (X) is different, and
C3 the buying behavior (Y') differs, for instance, since users
are less wealthy in population IT*.

For case (C1), the causal analyst in the team suggests that
they should use data from the Census in population II*, and
estimate the new age distribution, P*(w). The team goes on
to say that this will allow the target query P*(y|x) to be writ-
ten in a convenient form, namely,

The r.h.s. of the expression is estimable by combining data
from the source (P(v)) and the smaller dataset from the target
(P*(w)). For the second case, (C2), the new strategy to select
ads (i.e., P*(z|w)) is needed, the team suggests, so that the
effect of the new policy in II* can be assessed. It further says
that, for case (C3), P*(y|x) needs be obtained from scratch
in IT*.

The main goal of this paper is to explicate the rationale
behind this analysis and, more broadly, to provide a system-
atic way of deciding statistical transportability in arbitrary
settings. Specifically, the contributions of the paper are as fol-
lows. In Sec. 3, we develop a novel graphical decomposition
of the observational distribution that takes the latent structure
into account, which generalizes the celebrated C-component
strategy. In Sec. 4, we develop a sound, complete, and ef-
ficient algorithm to decide whether a query P*(y|x) can be
transported from a combination of data in the source (P(v))
and target domains (P*(w), W C V). In Sec. 5, we connect
the problem of identification of dynamic plans (stochastic in-
terventions) with statistical transportability, and show a re-
duction that proves the completeness of the former. After all,
the algorithmic treatment and completeness results proved in
Sections 4 and 5 close two long-standing problems in causal
inference, respectively, statistical transportability [Pearl and
Bareinboim, 2011] and identification of dynamic plans [Pearl
and Robins, 1995; Pearl, 2000, Ch. 4.4; Dawid et al., 2010].

2 Preliminaries

We use as basic semantical framework of our analysis Struc-
tural Causal Models [Pearl, 2000, pp. 204-207], which will
allow the formal articulation of the invariances needed to ex-
trapolate findings across settings, as defined next:

Definition 1 (Structural Causal Model (SCM)). A structural
causal model M is a 4-tuple (U, V, F, P(u)), where

e U is a set of exogenous (unobserved) variables;

e V is a set of endogenous (observed) variables;

() (b) (©

Figure 1: Models where the differences between source and target
domain affect different variables.

e F represents a collection of functions F = {f;} such that
each endogenous variable V; € V is determined by a func-
tion f; € JF, where f; is a mapping from the respective
domain of U; U Pa; to V;, with U; C U, Pa; C V\ {V;};

e The uncertainty is encoded through a probability distribu-
tion over the exogenous variables, P(u).

Every SCM M is associated with one causal diagram rep-
resented as a directed acyclic graph where any variable in
Vi € V is a vertex, and there exists a directed edge from
every variable in Pa; to V;. Also, for every pair V;,V; € V
such that U; N U; # 0, there exists a bidirected edge between
Vi and V;. We denote this causal diagram with the letter G.

A SCM M induces a probability distribution P(v) over the
set of observed variables V such that!

Pv) =3 H{MEV} P(v; | pa;,u;)P(w),  (2)

where each term P(v;|pa;,u;) corresponds to the function
fi € F in the underlying structural causal model M. These
functions represent autonomous mechanisms affecting only
its corresponding V;, locally [Aldrich, 1989]. In this paper,
we operate non-parametrically, i.e., making no assumption
about the particular functional form or the distribution of the
unobserved variables [Pearl, 2000]. In this case, the only as-
sumption is that the arguments of the functions are known as
encoded through the causal diagram G.

If each exogenous U; € U affects only one observed vari-
able V; € V, the causal model is called Markovian. In this
class of models, the joint distribution over observables can be
factorized as the product of the conditional probabilities of
each variable given its parents, i.e., P(v) = [[, P(vi|pa;).
Those conditional distributions provide a canonical way to
parametrize a model, since once each of them is given, the
whole joint distribution is characterized. In contrast, in most
real-world scenarios, Markovianity rarely holds since latent
variables commonly affect more than one observable. In this
paper, we focus on models where Markovianity does not hold,
which we call non-Markovian.

Random variables are denoted with uppercase letters (e.g,
C) while their instantiations to particular values are written
in lowercase (e.g, ¢). Similarly, sets of variables are written
in bold (e.g, C) and a vector of a value assignment to them in
lowercase-bold letters (e.g., ¢). Following standard notation,
we denote by G the graph that is the same as G except that
the edges incoming to variables in W and the edges going out

"'We will assume the observational distributions satisfy positivity,
that is, P(v) > 0 for every v.



from variables in X are removed. Let Gc) be the subgraph of
G made only of nodes in CCV and the edges between them.

When considering any topological order Vi, ...,V con-
sistent with G, let D<* = {Vj,,..., Vg, } be the set of vari-
ables in D C 'V ordered before V;, (including Vy,), and
D> =D\ DS fori=1,...,k and D=0 = ).

We define Pa(C) and An(C), as the union of C C V with
its parents and ancestors, respectively.

3 Factorization of Non-Markovian Models

In order to find a complete method for obtaining P*(y|x)
from P(v) and P*(w), we will decompose both input and
output distributions into small factors identifiable from data.

We introduce a strategy for decomposing distributions in-
duced by Non-Markovian models, and derive a number of
corresponding graphical and algorithmic properties. Overall,
once both input and output distributions are canonically de-
composed into factors, we solve the task if every factor of the
output can be obtained from the available inputs.

Our factorization builds on constructs known as c-factors
and c-components developed by Tian and Pearl in (2002a;
2002b). We start by augmenting these definitions to explic-
itly account for marginalization. First, let C,H C V be dis-
joint subsets, define the quantity Q[C || H], called c*-factor,
to denote the following function

Q[C | H](pa(cUh)\ h) =
> Il Pilpa,u)Pu(CuR)), (3)

w(CUH),h {i|V; cCUH}

where pa; and u; are the sets of observable and unobservable
parents of V;, respectively; and for any set B C 'V, define
U(B) = Uy, ep Ui For consistency, we define Q[ || ] = 1.

For the three diagrams in Fig. 1, the factor Q[ X, W,Y || 0]
is equal to P(w)P(z|w)P(y|w, z)=P(v). Similarly, the c*-
factor Q[X, Y [ W]=3",, P(w)P(a|w) P(yjw, x)=P(x,y).
On the other hand, for the non-Markovian model in Fig. 2(a),

Q[Z||C,D] = Y P(zle,u1)P(clur, us) P(d|us) P(u'), (4)

u’,c,d

where U’ = {Uy,Us, Us} is the corresponding set of unob-
served variables represented by the bidirected edges between
the pairs of observables (C, Z), (B, C), (B, D).

To simplify the notation, whenever clear from the context,

we will write Q[C || H](pa(cUh)\h) as Q[C || H], Q[C || 0]
as Q[C], and whenever C = {V;}, H = {V;}, we will write
Q[Vi || V;] instead of Q[{Vi} || {V;}].
Decomposing Distributions based on the Causal Graph.
As functions of probability distributions, c*-factors can,
sometimes, be “factorized” depending on the variables that
are marginalized out. The following definition characterize
such decomposability property.

Definition 2 (C*-Component). Let G be a graph over vari-
ables V and let C,H C 'V be two disjoint subsets such
that C UH = V. Then, C U H can be partitioned, rela-
tive to C, into sets {(C1 || H;), (Cz||Hz), ... (C;||H;)}, such
that {C1, ..., C;} partition C and {H1, ..., H;} partition H.

Two variables V;,V}, € V belong to the same (C,||H;) if
there exists any path (regardless of the directionality of the
arrows) between them in G¢.

For G in Fig. 2(a), with V = {A, B,Y, Z,C, D} there are
two c*-components relative to V, i.e.: (Z,C, B, D||)) and
(A,Y||0), which are the two disconnected subgraphs in Gy
in (Fig. 2(b)). Meanwhile, for G}y, z ¢ pj in Fig. 2(c), where
V ={Y, Z,C, D}, the c*-components relative to {Z, Y } are
(Y||D) and (Z||C). This is clear when we look at the graph
9lv,z,c,p]y,z Where the outgoing arrows from Z and Y are
removed (in this case, the arrow is shown in grey).

The importance of the c*-components stems from the fact
that they lead to a natural decomposition of the corresponding
c*-factors, which will disentangle the latents in a fundamental
way. For example, we note that the factor Q[Y, Z || C, D] =
3w e PEles w1, u2) Pelur, ug) Pldlus) Py, d. us) P(u)
can be decomposed as the following independent factors,

(Zul e P(z|e,u1,u2)P(clu, uz) P(u1, usz))
(Zug,%d P(d|uz) P(y|z, d, ua) P(us,ua)),  (5)

which is equal to Q[Z || C|Q[Y || D] (i.e., product of (Y|| D)
and (Z]|C)). The lemma below generalizes this property.
Lemma 1 (C*-Decomposition). Let D C V\H, and assume
that D is partitioned into ¢*-components (D;||H;);=1,.. ; in
the subgraph Gipumy, relative to D. Then we have

(i) Q[D || H] decomposes as

QD | H] =[] QD; | H,). (©)

(ii) Let a topological order of the variables in D be
Va, <---<Vq, in Q[DuH].

QD= | H]
QD; [ H;] = H{iIVdieDj} QD= |H]’ (7

where each QID=!||H), i = 0,1,...,k, is given by
QD= |H]=}  _ Q[D|H]. ®)

To illustrate this lemma, suppose we are given
QlY,Z | C,D], and note that according to Egs. (7)-(8),

QDI =QlzY|¢,D)/ Y, QZYI|C.Dl, ©

QIZIC)=Y QIZYC.DYY QIZY|C.D]. (10

As it turns out, it is not always possible to uniquely identify
a particular c*-factor from the available data. The following
definition formalizes this notion.

Definition 3 (C*-factor Identifiability). A c*-factor
Q[C || H] is said to be identifiable from a causal graph G and
a c*-factor Q[T || L] if Q[C || HJ can be computed uniquely
from Q[T ||L]. That is, if Q™ [C| H]=Q2[C || H] for
every pair of models M7 and M5 that induce the same G with
QM [T || L]=Q™2|T || L], Q[C || H] is identifiable.
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Figure 2: (a) Causal graph G, (b) subgraph Gv, and (c) subgraph
Gry,z,c,p)- Further, Gy, z ¢, Dly,z can be obtained from the sub-
graph (c) by removing the arrow Z — Y (shown in gray).

For instance, the c*-factor Q[Z || ] in Fig. 2(a) cannot be
identified from Q[Z, C || 0]. In words, there exists two differ-
ent SCMs M; and My with the same G and generating the
same Q[Z,C' || 0]= Zuth P(z|e,ur)P(cluy, us)P(uy, us),
but with different Q[Z || 0]= ", P(z[c,u1)P(u1), for some
values z, c.

In Alg. 1, we develop a procedure to identify c*-factors
from other c*-factors, which we called Identify*. This al-
gorithm uses a modified version of Identify [Tian and Pearl,
2002a] as a subroutine (for details, see Appendix A).
Theorem 1. Q[C || H] is identifiable from Q[T | L] in G if
and only if Identify* returns an expression for it.

In words, failure of Identify* implies there exist SCMs
My, My compatible with G that induce the same Q[T || L]
but QM:[C || H](v) # QM2[C || H](v), for some values v.

Query Decomposition. Once the c*-factors and compo-
nents are well-understood given a specific causal graph, we
turn our attention to the query distribution, P(y|x), given by

P(yx) = P(y,x)/P(x) = P(y,x)/>_ Ply,x). (1)

The distribution P(y,x) can be expressed in terms of c*-
factors, as shown in the following example.

Example 2. Consider the query P(y|z) in the context of the
graph in Fig. 2(a), we have

P(y.z)=Y  Plyzcd)=QIY.Z|CD] (12
P(z) =Q[Z|C,D,Y]=Q[Z| C], (13)
where the last equality follows from the fact that DY ¢
An(Z)Q[z,c,D.Y]' The graph g[An(sz)] = g[Y,Z,C,D] can be

partitioned relative to {Y, Z} into c*-components (Y| D) and
(Z||C) (the connected components in Gjy, z ¢, py,z, shown

in Fig. 2(c)), and by Lemma 1, Q[Y, Z || C, D] decomposes
as Q[Z || C|Q[Y || D], and
P(y,z) =Q[Z || CIQ[Y || D] (14)
The conditional distribution will be equal to
Ply,z) _QIZ[CIQY | D]
P(z) QZ| C]

Remarkably, while P(y,z) depends on Q[Z|C] =
2. P(zle)P(c) and QY || D] = 5, P(y|z,d)P(d), the
query P(y|z) is independent of Q[Z || C].

P(ylz)= =Q[Y || D]. (15)

Algorithm 1 Identify*(C,H, T, L, Q, G)
Input: CCTCV, HQV\An(C)g[CUH],
LCV\An(T)g > @ = Q[T | L], graph G. Assuming
Gicun) and Gy are composed of a single c*-component.
Output: Expression for Q[C || H] in terms of @ or Fail.
: B=H)\L.

if B = () then

Let (Cq,H;), (Ca,Hy),. .. be the c*-components of

G relative to B, intersecting variables in C.

return ), [[, Identify*(C;,H;, T,L,Q,G)
end if
return Identify(C, T, H,Q, Q)

A A

Naturally, if the joint distribution P(y, z, d, ¢, b, a) is avail-
able, P(y, z) is trivially computable. But, if we consider a
scenario with two domains (e.g., websites), II and II*, with
the goal of estimating P*(y|z) in the target domain, the pre-
vious analysis (example 2) shows that even if the distribution
P*(z,c) and P(z,c) are different, P*(y|z) can still be ob-
tained from data in the source alone. A more surprising con-
clusion is that if there are differences across settings in the
distribution of D, P*(d) needs to be measured despite D not
appearing in the query expression.

This leads to a more fundamental issue about which factors
of the model are really required to compute a certain query.
The following result answers this question in generality.

Lemma 2. Let Y, X C V be disjoint sets of variables, then
Py | x) = QA |H]/QA\Y[[HUY], (16

where (A \ Y| H UY) is the union of the c*-components of
Glan(yux)), relative to X, intersecting the variables in'Y .

In example 2, this maps to A = {Y'} and H = {D} since
(0]|Y, D) is the only c*-component relative to Z in Gz y,c, p)
that intersects variables in Y.

4 Transporting Probabilistic Relations

In this section, we build on the machinery developed so far
to decompose conditional distributions (e.g., classifiers) and
extrapolate them from one domain to another, as illustrated in
Example 1. This task is known as statistical transportability
[Pearl and Bareinboim, 2011, Section 5].

In any transportability instance, the source and target do-
mains, II and II*, are modelled explicitly and assumed to be
governed by two corresponding SCMs, M and M*. Each
causal model is accompanied by its corresponding causal
graph, in this case, G and G*. In the language of transporta-
bility, a special indicator variable T" (drawn as squares in G*)
is used to represent differences between the two domains. A
T-node points to a variable affected by unobserved factors
(causal mechanism or distribution of exogenous) that are dis-
tinct across domains. Formally, G* contains an extra edge
T; — V; whenever there might exist a discrepancy f; # f7
or P(U;) # P*(U;) between M and M*. This also allows
one to accommodate structural changes such as when V; has
a different parent set across domains.
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Figure 3: Causal diagrams involved in transporting P* (y|z, z).

Recall case 2 from Example 1. Note that a 7-node pointing
to X indicates that the underlying function that assign values
to X is different in the source and target domains, which im-
plies that P*(z|w) # P(x|w). The query P*(y|x) can be
transported in this case if we have P*(z, w) or more specifi-
cally P*(x|w). To see how, write the query as

: P* (o) P*(w)
P =2 Pl ) 5 ey

an

Due to the absence of a square node pointing to W and Y’
in Fig. 1(b), it follow that P*(y|x,w) = P(y|z,w) and
P*(w) = P(w), which leads to the following expression:

P(a | w)P(u)
= 2 Pl T )

Eq. (18) is a mixture of factors from II and II* within the
available input distributions, P*(z|w) and P(w, z,y).

On the other hand, the third case (Fig. 1(c)) requires one
to measure P*(y|x,w) in the target domain, which usually
means having the full distribution P*(y,x,w). In this case,
the task is done from scratch, without any transportability.

Next, we formally state the statistical transportability task.

“(y]z) (18)

Definition 4 (Statistical Transportability [Pearl and Barein-
boim, 2011]). Given two populations, IT and IT*, character-
ized by probability distributions P and P*, and causal di-
agrams G and G*, respectively; a statistical relation R(P)
is said to be statistically transportable from II to II* over
W C Vif R(P*) is identified from P, P*(W), G, and G*.
We will now focus on the general case of transporting re-
lationships R of the form R(P*) = P*(y|x) for any pair of
disjoint sets of variables X,Y C V, from inputs P(v) and
P*(w). Using Lemma 2 in the context of IT*, we can write

Q*[A || H] Q"[A | H]
Py |x) = = , (19)
VI gAY [ HY] T T, QA H
where Q*[.||.] describes a c*-factor in the domain IT* and

consistent with the corresponding causal model G*.

Example 3. Figs. 3(a) and (b) represent the causal graphs
in the source and target domains, II and IT*. The goal is to
transport R = P*(y|xz, z) to a domain IT* where the behavior
of the variable Z depends only on C', which contrasts with the
II’s behavior where Z depends on an unobservable variable
shared with Y (bidirected arrow). Note that the variable A
in IT* has an extra dependency on the value of X that is not
present II. Only data from P*(z, a) is available in IT*.

Due to their distinct behaviors, G* has T-nodes pointing
to Z and A (ie, 0 — Z,0 — A). Using Lemma 2

Algorithm 2 Transport*(G,G*, Y, X, W)
Input: G,G* causal diagrams over a set of variables V,
Y, X C V disjoint subsets of variables, W C V.
Output: P*(y|x) in terms of P(v), P*(w) or Fail.
1: Let (A|/H) be defined as in Lemma 2 with G*.
2: Let D C AUH be the set of vars. pointed by 7-nodes.
3: Let I be the set of c*-components (A;||H;),i =1,...,k
of Gy g relative to AU(WNH), such that (A; UH;)N
D = 0, and Identify*(A;, H;, V.0, P(v),G) # Fuil,
and let N be the rest of them.
Na < U, jmen Ai and Nu < Ua, jm,)en Hi
if Na € W then return Fail.
Q"[Na [ Nu] < > g\n, P71 (W)
Q' [A[H]+ X Q@ [Na|Nu] [] QA
wnh (A ||H;)el

8 return Q*[A | H]/Zy Q*[A | H].

Nk

i [ L]

w.r.t. R, note that the c*-components relative to {X, Z} in
Glan(y,z,x)) that contain Y is (X |[A, Y, D), yielding:

P*(ylz2)= QY X AD /Y Q'YX AD], (0)

which corresponds to A = {Y, X} and H = {4, D}.

If An(A) C W, then the given distribution P*(w) in-
cludes all variables that are ancestors of the set A in the graph
G*, and P*(y | x) is easily estimated from P*(w). If this is
not the case, it is possible to leverage data from the source
domain II, namely, P(v). The key observation is that both
domains IT and IT* share some commonalities. The follow-
ing lemma formalizes this notion.

Lemma 3. [C*-invariance] Let G,G* be a pair of graphs
Sor (M, M*), then Q*[C || H] = Q[C| | H] if G* does not
contain a selection node T; pointing to any V; € C U H.

In words, if there is no 7T-node pointing to any variable
in a set C U H in G*, the c*-factor Q*[C | H] is invari-
ant and can, therefore, be transported from the source do-
main. In example 3, the c*-factor Q*[Y || D]=QI[Y | D],
while Q*[X, A || 0] may be different than Q[X, A || 0].

Let D C A U H be the subset of variables involved in
Eq. (19) that are pointed by T-nodes in G*. Then, factors
involving variables in D need to be obtained from P*(w),
which is equivalent to Q*[W || An(W)\W].

Let N be the set of c*-components in the graph
g[*An( AUH)) relative to AU(WNH), that intersect any vari-
able in D or those that cannot be identified from P(v). Let
Na =Ua,ju,)en (Ai) and Nu = Ua m,yen (Hi)-

In Example 3, g[’;wH] (Fig. 3(c)) has, relative to
{Y, X, A}, c*-components (Y||D) and (X, A||0). The only
variable pointed by a T-node is A, so (Na|Nug) =
(X, A||0). That need to be obtained from P(z,a); the fol-
lowing lemma characterizes this operation.

Lemma 4. Given a causal diagram G, let C;H C 'V be two
disjoint subsets and W C 'V such that H 2 An(C)g,, \ C.



IfC C'W, then
QC|H] =)

By construction Ny contains all ancestors of N 4, satisfy-
ing Ng D An(NA)g\*N \Na. Then, if No € W, Lemma 4
licenses o

P(w). 1)

w\c

Q*[Na [ Nu] =)

In our example, Q[X, A || 0] = P*(z,a).
Let I be the c*-components of g[’;wH] not in N, that by

definition, are all identifiable from P(v). Consequently, the
quantity Q*[A || H] is identifiable from P(v) and P*(w) as:

P*(w). (22)

w\na

QAIHI =Y Q' Na|Nu] J] @QlA:IH] 23)

wnh (A;|H,)eT

For Example 3, we can obtain Q*[Y || D]=QI[Y || D], us-
ing Identify*(Y, D, V,(, P(v),G) and in terms of P(v) as

QY D)= P2 Plylr. 7 d.a)P('). (24)
And the final expression is
Prylae)=3" P*ala) S P(l) Y Plyle da)P(). (25)

We incorporate the discussion so far in the procedure
Transport* shown in Alg. 2, which is complete for this task
as given by the following statement.

Theorem 2. [Completeness] The relationship R = P*(y|x)
is transportable from P(V), P*(W) and G,G* if and only if
Transport*(G,G*,Y, X, W) does not fail.

5 Identifying Dynamic Plans

In this section, we investigate the identifiability of dynamic
plans [Pearl and Robins, 1995; Pearl, 2000; Didelez er al.,
2006] and show that it can be reduced to the problem of trans-
portability of marginals. We further show that the procedure
introduced in [Tian, 2008] is not only sound but complete.
This closes the problem of identifiability of dynamic sequen-
tial plans since all sequential plans that are computable from
observational data can be algorithmically determined.

In this setting, we assume that the observational data P(V)
is collected from a SCM that induces a causal diagram G with
observed variables V in domain II. The goal is to determine
the behavior of Y C V under a hypothetical intervention
that changes the mechanisms of variables X C V, which we
call domain IT*. The probability distribution over V in the
intervened system is P*('V) and the associated graph is G*.
The identifiability task amounts to computing P*(Y) in that
hypothetical world using P(V), the assumptions encoded in
G, G*, and knowledge about the interventions.

There are different ways of performing an intervention and
changing the value of the corresponding variable, say X € X.

Atomic or do-intervention. The variable X is set to a con-
stant value x’ in its domain, i.e., P*(z | pal,uk) = 1x—q.
Conditional Intervention. The value of X is determined as a

function g(pa} ), thatis, P*(z | pay,uy) = 1x—g(paz)-

(@¢g

() g™ (C1)

(©)G" (C2)

Figure 4: Causal diagrams associated with Example 4.

Stochastic Intervention. X will take value z in its domain
according to an externally specified probability distribution
P*(x | pay), namely, P*(x | pay, uz) = P*(x | pa3).

We note that these different types of interventions can be
encoded in a similar fashion using the formalism of trans-
portability by adding T-nodes pointing to each variable in
the interventional set, X. This indicates that their functions
are different that those in the original system II. Since the
new intervention is part of the input of the problem, Q*[X] =
[Ixex @[ X] is available in the target domain.

Example 4. Consider the the dynamic plan first studied in

[Pearl and Robins, 1995] and shown in Fig. 4(a). With the

new transportability mapping, the goal is to assess the distri-

bution P*(y) in two hypothetical environments where:

C1 the values of (X7, X5) have been fixed to (x1,z3), in
standard do-form, i.e., P*(21,72) = 1(x, X3)=(21,20)-
The corresponding G* is shown in Fig. 4(b).

C2 the value of X; is fixed to 1 and X5 is set condition-
ally on Z based on a function g(z). That is, P*(z1) =
Ix, =z, and P*(x3 | 2) = 1x,—g4(). The corresponding
G* is shown in Fig. 4(c).

In [Pearl and Robins, 1995], the impact of the plan in the
outcome variable Y is denoted as P(y | 41, ..., %, ) (written
as P(y; o) in [Tian, 2008]). The following follows:

Definition 5 (Plan Identifiability). A sequential plan is said to
be identifiable if P(y | 21,...,4,) (equivalently P(y;o0x))
is uniquely computable from the joint distribution P(v), for
every assignment (1, ..., Z,).

We show next that the reduction from plan identification
to transportability is indeed valid and that the corresponding
completeness follows.

Theorem 3. The effect P(y|21,...,24,) (o, P(y;ox)) is
equivalent to P*(y) where 11* is related to G* and Q*[X]
is determined by the corresponding intervention on X.

Corollary 1. Transport* is complete for plan identification
given P(v) and Q*[X].

Corollary 2. The condition in Thm. I from [Tian, 2008] is
also necessary for dynamic plan identification.

Using this result, one can immediately see that contrary to
previous beliefs [Pearl, 2000, pp.120], and as hinted by [Tian,
2008], the plan in Example 4(C2) is not identifiable from
P(v) and Q*[X]. While case (C1), associated with Fig. 4(b),
can be solved using do-calculus [Pearl, 1995], the extra edge
Z — X5 in Fig. 4(c) (C2) makes X; and Y dependent con-
ditional on X5, hence the same derivation strategy does not
work (see non-identifiability proof in Appendix C).



6 Conclusions

We developed a procedure (Alg. 2) that is complete (Thm. 2)
for the task of estimating a distribution P*(y|x) in a target
domain II* using limited data from IT* and a probability dis-
tribution collected in a different source domain II. The algo-
rithm uses a canonical factorization of marginal and condi-
tional distributions, and a procedure to identify such factors
(Alg. 1 & Thm. 1). Also, we showed that identifying the ef-
fect of plans can be reduced to a statistical transportability
task for which our method is complete (Thm. 3). We hope
that these results provide a better understanding of the as-
sumptions and trade-offs involved in the construction of more
robust and generalizable learning systems.
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From Statistical Transportability to
Estimating the Effect of Stochastic Interventions
— Supplemental Material

A Proofs for Section 3

In general, the following basic identities about c*-factor will
prove useful to our analysis.

Proposition 1. For any SCM M, the next identities hold:

(i) QIV [|0](v) = P(v).

(i) QIC|| An(C) \ C](c) = P(c).
(iii) Q[C || H] is a function of the values pa(C U H) \ h.2

The first identify follows immediately from the definition
of c*-factor; the second identity says that the c*-factor is
equal to its joint distribution whenever we marginalize its
corresponding ancestral set; the third notes that since each
probability term appearing in a c*-factor have v; and pa; as
arguments, and all the unobservables and variables in H are
summed out, the corresponding c*-factor depends only on the
values of the parents of the factor itself and the variables that
were marginalized.

Lemma 5. Let C,H C V be two disjoint sets, then:
QIC|H]=Q[C|HN An(c)g[cul—[]]' (26)

Proof. Let A = HN An(C)g g sy and B = H\ A. Also
letUp =U(CUA)and Ug = U(CUH) \ Ua; then

> I
w(CUH),h {i|V;ECUA}

II Pw;lpaj,u)Pus). @7)
{ilV;eB}

Q[C|H] = P(vilpa;, ui) P(ua)

By construction, no variable in BUUg is in UweCuA(Pai U
U;), hence the sum over Ug, B can be pulled in after the first

product:
>, I

ua,a{i|V;ECUA}

> 11 Pjlpas,u)Plus),  (28)

up.b {j|V;€B}

Q[C|H] = P(vi|pa;,ui)P(ua)

and since the second sum ranges over all variables in the
scope of the corresponding product, it must be equal to one,

giving
QICIHI=) " J[ Pluilpas,u)P(ua) (29
ua,a {i|V;eCUA}
=Q[C| A], (30)
which is equal to the right hand side of Eq. (26). O

?Recall that Pa(B) = Pa, UB

We note that marginalizing a variable in the set C from a
c*-factor is equivalent to move such variable to the set H, as
stated below.

Lemma 6. Let C, HCV be two disjoint sets and ECC, then:

Y .QIC|H]=Q[C\E|HUE]. 31)
Proof. Summing both sides of Eq. (3) over E leads to
> Q[C|H] = (32)

> 1l

w(CUH),h,e {i|V; €CUH}
Note that CUH U U(C UH) = (C\ E)U (HUE) U
U((C\ E)U (HUE)), hence the right hand side is exactly
Q[C\E|HUE]. O

P(v; | pa;,u;) P(u(CUH)). (33)

For concreteness, consider marginalizing D from
Q[Y, D || Z] in Fig. 2(a)), which is equal to:

ZZP |C ul d|U3) (1]|Z,d, U4)P(Ul>,
d u',z
which by definition is equal to Q[Y || Z, D].

More generally, c*-factors can be seen as generalization of
the family relationships P(v;|pa;) for non-Markovian models
such that the latent structure is taken into account. To obtain
some intuition, consider again the c*-factor in Eq. (4), and
note that D is marginalized and is not a parent or ancestor of
Z or C, and Us only appears on the term for D, so we can
sum them out, yielding

QIZ||C,D)= > P(zlcu)P
ul,ug,C
that is, Q[Z || C,D] does not depend on D.

We are ready to discuss one central operation in the alge-
bra of c*-factors that is the computability of one c*-factor in
terms of other, larger ones. The next two lemmas generalize
the results from [Tian and Pearl, 2002a] shown in the context
of c-factors (i.e., unmarginalized c*-factors).

Lemma 7 (Ancestral marginalization). Let E be a set such
that Ez(An(E)g[CUH]ﬁC) withE C C C 'V \ H, then

QE|H] =3 Q[C|H] (34)

The set {Y, Z, C, D} in Fig. Z(a) is ancestral in G (i.e.,
An(Y,Z,C,D) = {Y Z,C, D}), therefore, by Lemma 7,

QY.Z,C.D||0] =3 QIABY,ZCD|0. (35

(clur,uz2) P(u1,u2)=Q|[Z || C],

To illustrate further: {Z} is contains all its ancestors
in Gy, z,c,p) intersecting {Y, Z} (shown in Fig. 2(c)), so
Lemma 7 gives

Qizlc,n)=3_ QIY,Z|C, D] (36)



Algorithm 3 Identify*(C, H, T, L, @, G) (extended)
Input: CCTCV, HCV\An(C)g;c s> LEV\AN(T)g 1y,

Q = Q[T | L], graph G. Assuming Q[CUH] and Gipyuy) are com-
posed of a single c*-component.
Output: Expression for Q[C || H] in terms of Q or Fail.

: B=H\L.

2: if B # () then

3:  Let(Cq,H1),(C2,Hy),... be the c*-components of G rel-

ative to B intersecting variables in C.

4:  return ), [], Identify*(C;,H;, T,L,Q,G)

5: end if

6: Let A <= An(C)gp py N'T.

7. if A = C then return Q[C IH] =32 Q

8: if A = T then return Fuil.

9: if A = C then
10:  Let (T'||L’) be the c*-component containing C in G

relative to L.

11:  Compute Q[T'|L] from Q[A|H]=3,,Q. using
Lemma 1(ii).

12:  return Identify(C, H, T, L', Q[T' || L'], G).

13: end if

Proposition 2. Ler C'H C V and T,L C V be pairwise
disjoint sets, if CN'L # 0 or C\ T # 0, Q[C || H] is not
identifiable from Q[T || L].

Marginalizing variables from a non-identifiable component
does not help with identifiability. Define a direct ancestor set
of C in G to be a set of variables A such that C C A C V,
and if node W € A, then W & C or there is a directed
path from W to a node in C, and all the nodes on that path
are in A. Note that all ancestral sets of C are also direct
ancestor sets. Lemma 6 in [Huang and Valtorta, 2008] can be
immediately shown in terms of c*-factor identifiability.

Lemma 8 (Set-subset identifiability). Ler C,H C 'V be dis-
Jjoint subsets such that C U H is a direct ancestor set of C in
G, then Q[C || H] is identifiable from Q[V] in G if and only if
Q[C U H] is identifiable from Q[V] in G.

Proof. (if) Suppose Q[C U H] is identifiable,
QIC || H] = Y, QIC UH].

(only if) Suppose Q[C U H] is not identifiable from
Q[V] in G, then by [Huang and Valtorta, 2008, Lemma 6],
Q[C| H] = ), Q[C U H] is not identifiable from Q[V] in
g either.

then

Tian and Pearl (2002a) proposed an algorithm called Iden-
tify that was proven to be complete for the task of identifying
a c-factor Q[C] from another Q[T] with C C T [Huang and
Valtorta, 2008]. We use this procedure as baseline and in-
troduce the procedure Identify* (alg. 1), which allows factors
with marginalized variables. We show that Identify* is com-
plete for this task of identifiability, namely,

Theorem 1. Q[C || H] is identifiable from Q[T ||L] in G if
and only if Identify* returns an expression for it.

Proof. (if) The soundness of Identify* follows from Lemma 1
and the soundness of Identify [Tian and Pearl, 2002a; Huang
and Valtorta, 2008], since after line 5 Identify* is equivalent

to Identify only that it treats summed out variables as unob-
servables.

(only if) The procedure fails in line 8 if H = L and all
variables in T are ancestors of C in Q[TuH], and both that
graph and G|cuny are made of a single c*-component. This is
equivalent to Q[C] being not identifiable from the projection
[Verma, 1993] of G over the variables in T summing out H,
callit G(T). This means that there exists two models M7, Mo
for G(T) such that they match in P(t) but Q*[C](t) #
QMz[C](t), for some configuration t.

Let Hi < Hs < ... < Hj be a topological order on
the variables in H in G. We can extend M{ and Mj to
obtain models with a set of observable variables equal to

T U {Hy, Hy—1,..., H;}, matching in P(t) but with dif-
ferent Q1 (C || Hy, Hy—1, ..., Hi](t, hyy hi—1, ..., hy) #
QM% [C || Hk7Hk:—17 ) Hl](ta hk’v h’k—la SRR h’l) by intro-

ducing one H; at a time in reverse topological order.

This implies that some Q[C; || H;] is not identifiable from
Q[T || L]. It follows that the product in line 4 is also not iden-
tifiable from the same Q). O

A.1 Query Decomposition
Lemma 2. Let Y, X C V be disjoint sets of variables, then

Py [x) = QA[H]/QA\Y[HUY], (16

where (A \ Y| HUY) is the union of the c*-components of
Glan(yux)), relative to X, intersecting the variables in'Y .

Proof. Let F = An(Y UX) \ (Y U X), using Lemma 1,
and by construction we have that Q[X || F U Y] factorizes as
QX\A|F\H|QA\Y | HUY], and the first factor is
not a function of Y. Similarly, Q[Y U X || F \ Y] factorizes

as QX \ A || F\ H|Q[A || H], hence
_ Ply,x) _ QIYUXJ[F\Y]
PO =500 = T axEuY e
L QX\AIF\HQAH

QX\A|F\H|QA\Y|[HUY]

Cancelling the first factor in numerator and denominator

proves the conclusion. O

B Proofs for Section 4

Lemma 3. [C*-invariance] Let G,G* be a pair of graphs
Sfor (M, M*), then Q*[C||H] = Q[C | H] if G* does not
contain a selection node T pointing to any V; € C U H.

Proof. From the definition of Q. || .], we have
Q*[C|H](v) =

> I

w(CUH),h {i|V;ECUH}

P*(v;|pa;, u; ) P* (u(CUH)). (39)

A selection node 7" in G* points to a variable in V; € CUH
only if f* # f; orif P*(U;) # P(U;). Thus, the absence
of T; — V; implies P*(v; | pa;,u;) = P(v; | pa;,u;) and
P*(u;) = P(u;). Then, every term in equation (39) is the
same in both domains, and the claim follows. O



Lemma 4. Given a causal diagram G, let C,H C 'V be two
disjoint subsets and W C 'V such that H O An(C)g,, \ C.
IfC C'W, then o

QICIH =3 P(w) 1)
Proof. We have
P(w) = Q[W [ An(W) \ W] (40)
> P(w)=QWNC|An(W)\W U (W\C)], (41)
w\c

since C C W it follows

2w PW) =

and An(C) C An(W). Also H C An(C)g,, implies H C
An(C) C An(W). Then, (CUH) C An(W) and since
C and H are disjoint; it follows that An(W) \ C D H. By
Lemma 5 the right hand side is equal to the left hand side of
Eq. (21) and the conclusion follows. O

QC | An(W)\ C], 42)

Lemma 9. If there exist a directed path between a variable
in a non-transportable c*-factor Q*[A || H] to some A € A
in Gl ymavwnn) then Q*[A || H] is not transportable.

Proof. Let D be such directed path with variables J — L; —
Ly — --- — L with L, = A, and note that it does not
involve any variable in W. Then fix two models M| and
Mj with different Q*[A || H] and the same PM: (1, | pag,)
= PMi(l; | pay,) for i=1,2, j=2,. ...k, making sure that
each distribution is a one to one mapping from pa, to ;. Also,

for V; ¢ plet PMi*(v; | pa;) = 1/2,i = 1,2. Leta =
(1/2)IVI=F  then:
QA H] =) aQ*[L] 0] (43)
N\a
k
—&ZQ [A || H]( ahH (Lilpay, ). (44)
N\a j=2

Define f(j) = >, P(ljlpa; 1) f(i —1).j €{2,...,k}
and f(1) = P*(l1|pa;, ). By construction, each f(j) is a one-
to-one mapping, so if f(1) is different for some value of L4,
f (k) is different between the models for some L = A. O

Lemma 10. Let Na and Ny be defined as in Transport®.
If Q*IN A || Nu| is not transportable by Lemma 4, the query
P*(y | x) is not transportable.

Proof. This is the case if there exists some variable in IN 5o
that is not in W. Since every element in A U H is an ances-
tor of A in Gy, This means that there exists a directed path
from some L; € Na to some A € A and by Lemma 9 then
Q[A || H] is not transportable. O

Theorem 2. [Completeness] The relationship R = P*(y|x)
is transportable from P(V), P*(W) and G, G* if and only if
Transport*(G,G*, Y, X, W) does not fail.

Proof. (if) The soundness of Transport* follows from the dis-
cussion in this section, particularly Lemma 1, 3, 4 and the
soundness of Identify*.

(only if) The procedure fails if there exists some variable
in N a that is not in W. Then by Lemma 10 we have that
Q[A || H] is not transportable. O

C Proofs for Section 5

Theorem 3. The effect P(y|#1,...,25) (or, P(y;ox)) is
equivalent to P*(y) where 11* is related to G* and Q*[X]
is determined by the corresponding intervention on X.

Proof. The target domain II* and the corresponding diagram
G* match exactly the original system II under the specified
intervention. Therefore, transporting the distribution P*(y)
from P(v) and Q*[X] is equivalent to identifying the plan
effect. If P*(y) is not transportable, it implies that there
exists two pairs of models M, My and M7, M3 such that
My and M, are compatible with G and induce the same
P(v). Then, after the plan intervention, M; and M5 com-
patible with G*, but PMi (y) # PM: (y) for some particu-
lar instantiation Y = y. These models constitute a proof of
the non-identifiability of the plan as contemplated in [Pearl,
2000]. O

Example 5. The plan considered in Example 4(C2) is not
identifiable from P(v) and Q*[X]. We have that P*(y) can

be written as
> QxR

T1,T2,2

From [Huang and Valtorta, 2008] we have that Q[Z,Y] is
not identifiable from P(z1,z2,2,y) = Q[V]. This means
that there exists two models M7 and Ms, compatible with G,
that induce the same P(v) but for some v/ = (a}, 2}, 2", y/)
we have Q'[Z,Y](V') = a, Q*[Z,Y](v') = b with a # b.
Assume, without loss of generality that ¢ > b. Then consider
the intervention do(X; = 2}), do(X2 = g(z1, z)) with

stor) = {2

other than z,

X5]Q[Z,Y]. (45)

) if (xlv Z) = (x/la Z/)
.

N A R
We will extend a strategy used by [Huang and Valtorta, 2008]
to construct two models M{ and M} where the domain of Y’
is Dy x {0,1}, where Dy is the domain of Y in My, M.
Let F'(z2) be a probability function from Dy, to {0, 1}, such
that P(F(z2) = i) > 0,4 = 0,1 and P(F(x2) = 0) =
1— P(F(x2) =1). In M/,i = 1,2 we define:

P (. Blaz) = PMe(ylea) P(F(22) = k). (47)
AndforV; € {X1,X,,Z} letPMg(vj|paj) = PMi(v;|pa;).
We can verify that

PMi(v\ y, (y,k))

’

=MV \{Y},(Y,K)|(v\y,(y,k)) (48)

QMIIV\{Y}, (Y, K)|(v)P(F(x2) = k) (49)
= QY [V\{Y}, (Y, K)|(v)P(F(x2) = k) (50)
=QM:[V\{Y}, (Y, K)|(v\ v, (y, k) (51
= PM:(v\y, (y,k)). (52)



Under intervention, we have that PM: (y/),i=1,2 is given by

PY((y,0) = Y QX1]Q [X2]QY[Z,Y, K]. (53)

Z1,T2,2

Note that Q*[X;] = 1 for X; = 2} and 0 otherwise. Simi-
larly, @*[X2] = 1 for X3 = g(«1, z) and 0. Hence

PM((y,0))
= Z Q* [XQ]('IJD Z2, Z)QML/ [ZvY’K](Z7 Z2, (ylvo)) (54)

Tro,z
By construction we have
QY(Z.Y K]( 22, (y'.0))
= Qkﬁ [Z,Y,K](Z, T2, yl)P(F(xQ) = O) (55

Let P(F(z5) = 0) = 1/2 and P(F(z2) = 0) = (a — b)/4,
for xo # . Tt yields:

PM((y,0) =(3)QM[Z,Y)(2,2h, v )+ (56)
(aT_b> Z QM‘/[Z7Y](Z,£C2,:U/)
xoFTy,

zo=g(z,2)

For Mj:
PMi((y,0)) =La+ 57
(<2 > QMIZY](z22.y)
ToFATY,
732:9(:”/17'3)
> la. (58)
As for M3
PM: ((y,0)) =1b+ (59)
(<2 > QMZY(z 32,9
TaFTh,
I2:g($/172)
a—b
< b+ 95 (60)
< ia. ©61)

Then, M/, M} and M;, Ms are compatible with G and G*,
match in P(v) and provide different plan effects.
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