
On Causal Identification under Markov Equivalence∗

Amin Jaber1 , Jiji Zhang2 and Elias Bareinboim1

1Department of Computer Science, Purdue University
2Department of Philosophy, Lingnan University
{jaber0, eb}@purdue.edu, jijizhang@ln.edu.hk

TECHNICAL REPORT
R-44

May, 2019

Abstract
In this work, we investigate the problem of com-
puting an experimental distribution from a combi-
nation of the observational distribution and a par-
tial qualitative description of the causal structure
of the domain under investigation. This descrip-
tion is given by a partial ancestral graph (PAG) that
represents a Markov equivalence class of causal
diagrams, i.e., diagrams that entail the same con-
ditional independence model over observed vari-
ables, and is learnable from the observational data.
Accordingly, we develop a complete algorithm to
compute the causal effect of an arbitrary set of in-
tervention variables on an arbitrary outcome set.

1 Introduction
A prominent approach to infer causal effects leverages a com-
bination of substantive knowledge about the domain under
investigation, usually encoded in the form of a causal dia-
gram, with observational data [Pearl, 2000; Bareinboim and
Pearl, 2016]. A sample diagram is shown in Fig. 1a, where
the nodes represent variables, directed edges represent direct
causal relations from tails to heads, and bi-directed arcs rep-
resent the presence of unobserved (latent) variables that gen-
erate spurious association between the variables. The deci-
sion problem of whether an interventional distribution can be
computed from a combination of observational and experi-
mental data together with the causal diagram is known as the
problem of identification of causal effects (identification, for
short). For instance, a possible task is to identify the effect of
do(X=x) on V4=v4, i.e. Px(v4), given the diagram in Fig. 1a
and data from the distribution P (X,V1, ..., V4).

This problem has been extensively studied in the literature
with a number of criteria established [Pearl, 1993; Galles and
Pearl, 1995; Kuroki and Miyakawa, 1999; Tian and Pearl,
2002; Huang and Valtorta, 2006; Shpitser and Pearl, 2006;
Bareinboim and Pearl, 2012], which include the back-door
criterion and the do-calculus [Pearl, 1995]. Despite their
power, these techniques require a fully specified causal di-
agram, which is not always available in practical settings.
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Figure 1: A causal diagram (left) and the inferred PAG (right).

One may try to learn the causal diagram from data. How-
ever, it is common that only an equivalence class of causal
diagrams can be consistently inferred from observational
data [Verma, 1993; Spirtes et al., 2001]. A useful representa-
tion of such an equivalence class is a partial ancestral graph
(PAG) [Zhang, 2008b]. Fig. 1b shows the PAG that can be in-
ferred from observational data generated by Fig. 1a. In PAGs,
directed edges signify (possibly indirect) causal relations and
circle marks indicate structural uncertainty.

In this work, we analyze the marriage of these two lines of
investigation. Identification from an equivalence class is con-
siderably more challenging than from a single diagram due to
the structural uncertainty regarding both the causal relations
among the variables and the presence of hidden variables.
Zhang [2007] extended the do-calculus to PAGs. In practice,
however, it is computationally hard to decide whether there
exists a sequence of applications of the rules of the gener-
alized calculus to identify an effect. Perković et al. [2015]
generalized the back-door criterion to PAGs, and provided a
complete algorithm to find a back-door admissible set, should
such a set exist. However, in practice, no adjustment set ex-
ists for many identifiable effects. In this extended abstract,
we summarize the approach taken in [Jaber et al., 2018b;
Jaber et al., 2018b; Jaber et al., 2019] that culminated in
a complete algorithm to identify causal effects given PAGs.
Specifically, our contributions are as follows:

1. We revisit the original identification algorithm given
causal diagrams and introduce a new formulation which
is more amenable under structural uncertainties.

2. We derive crucial PAG properties including a novel
graph-decomposition strategy that breaks a target causal
distribution into an equal product of more tractable ones.

3. We develop a complete algorithm to compute the effect
of an arbitrary set of intervention variables on an arbi-
trary outcome set from a PAG and observational data.



2 Preliminaries
In this section, we introduce the basic notation and machinery
used throughout the paper. Bold capital letters denote sets
of variables, while bold lowercase letters stand for particular
value assignments to those variables.

2.1 Structural Causal Models
We use the language of Structural Causal Models (SCM)
[Pearl, 2000, pp. 204-207] as our basic semantic framework.
Formally, an SCM M is a 4-tuple 〈U,V,F, P (U)〉, where
U is a set of exogenous (latent) variables and V is a set of
endogenous (measured) variables. F represents a collection
of functions {fi} such that each endogenous variable Vi ∈ V
is determined by a function fi ∈ F, where fi is a mapping
from the respective domain of Ui ∪ Pai to Vi, Ui ⊆ U,
Pai ⊆ V \ {Vi}. The uncertainty is encoded through a prob-
ability distribution over the exogenous variables, P (U), and
the marginal distribution induced over the endogenous vari-
ables P (V) is called observational. Every SCM is associated
with one causal diagram where every variable Vi ∈ V is a
node, and there exists a directed edge from every node in Pai
to Vi. Also, for every pair Vi, Vj ∈ V such that Ui ∩ Uj 6= ∅,
there exists a bi-directed edge between Vi and Vj . We restrict
our study to recursive systems, which means that the corre-
sponding diagram will be acyclic.

Within the structural semantics, performing an action X=
x is represented through the do-operator, do(X = x), which
encodes the operation of replacing the original equation for X
by the constant x and induces a submodel Mx. The resulting
distribution is denoted by Px, which is the main target for
identification in this paper. For further details on structural
models, we refer readers to [Pearl, 2000].

2.2 Ancestral Graphs
We now introduce a graphical representation of equivalence
classes of causal diagrams. A mixed graph can contain di-
rected and bi-directed edges. A is an ancestor of B if they
share a directed path out of A. A is a spouse of B if A ↔ B
is present. An almost directed cycle happens when A is both
a spouse and an ancestor of B. An inducing path is a path
on which every node (except for the endpoints) is a collider
on the path (i.e., both edges incident to X are into X) and
every collider is an ancestor of an endpoint of the path. A
mixed graph is ancestral if it doesn’t contain a directed or
almost directed cycle. It is maximal if there is no inducing
path between any two non-adjacent nodes. A Maximal An-
cestral Graph (MAG) is a graph that is both ancestral and
maximal [Richardson and Spirtes, 2002].

In short, a MAG represents a set of causal diagrams that en-
tail the same independence and ancestral relations among the
observed variables. Different MAGs may be Markov equiva-
lent in that they entail the exact same independence model. A
partial ancestral graph (PAG) represents an equivalence class
of MAGs [M], which shares the same adjacencies as every
MAG in [M] and displays all and only the invariant edge
marks. A circle indicates an uncommon edge mark. A PAG is
learnable from the conditional independence relations among
the observed variables and the FCI algorithm is a standard
method to learn such an object [Zhang, 2008b].

2.3 Graphical Notions
Given a causal diagram, a MAG, or a PAG, a path between X
and Y is potentially directed (causal) from X to Y if there is
no arrowhead on the path pointing towards X . X is a possi-
ble ancestor of Y , i.e., X ∈ An(Y ), if there is a potentially
directed path from X to Y . By stipulation, X ∈ An(X). Y
is called a possible child of X , i.e. Y ∈ Ch(X), if they are
adjacent and the edge is not into X . For a set of nodes X, we
have Ch(X) = ∪X∈XCh(X). If the edge marks on a path be-
tween X and Y are all circles, we call the path a circle path.
We refer to the closure of nodes connected with circle paths
as a bucket. Obviously, given a PAG, nodes are partitioned
into a unique set of buckets.

A directed edge X → Y in a MAG or PAG is visible if
there exists no causal diagram in the corresponding equiva-
lence class where there is an inducing path between X and
Y that is into X . This implies that a visible edge is not
confounded (X ←−→ Y doesn’t exist). Which directed
edges are visible is easily decidable by a graphical condi-
tion [Zhang, 2008a, Def. 8], so we simply mark visible edges
by v. For brevity, we refer to any edge that is not a visible
directed edge as invisible.

3 Revisit Identification in Causal Diagrams
Tian and Pearl [2002] presented an identification algorithm
based on a decomposition strategy of the causal diagram into
a set of so-called c-components (confounded components).

Definition 1 (C-Component). In a causal diagram, two nodes
are said to be in the same c-component if and only if they are
connected by a bi-directed path, i.e., a path composed solely
of bi-directed edges.

For any set C ⊆ V, the quantity Q[C] is defined to denote
the post-intervention distribution of C under an intervention
on V \ C, i.e. Pv\c(c). Given a diagram D, Q[C] decom-
poses into a product of sub-queries over the c-components in
DC, where DC denotes the (induced) subgraph of D over C.
Hence, we get the following decomposition, where Ci is a
c-component in DC:

Q[C] =
∏
i

Q[Ci] (1)

The significance of c-components and their decomposition
is evident from [Tian, 2002, Lemmas 10, 11], which are the
basis of Tian’s identification algorithm. Our goal is to re-
formulate the procedure with a more local, atomic criterion
shown in Lem. 1. The step-wise algorithm is shown in Alg. 1.

Lemma 1. Given a causal diagram D over V, X ∈ T ⊆ V,
and Pv\t, i.e., an expression for Q[T]. If X is not in the
same c-component with a child in DT, then Q[T \ {X}] is
identifiable and given by

Q[T \ {X}] =
Pv\t

Q[SX ]
×

∑
x

Q[SX ] (2)

where SX is the c-component of X inDT and Q[SX ] is com-
putable from Pv\t by [Tian, 2002, Lemma 11].



Algorithm 1 ID(x,y) given Causal Diagram G
Input: two disjoint sets X,Y ⊂ V
Output: Expression for Px(y) or FAIL

1: Let D = An(Y)GV\X

2: Let the c-components of GD be Di, i = 1, . . . , k
3: Px(y) =

∑
d\y

∏
i IDENTIFY(Di,V, P )

4: function IDENTIFY(C, T, Q = Q[T])
5: if C = T then return Q[T]

/* Let SB denote the c-component of {B} in GT */
6: if ∃B ∈ T \C such that SB ∩ Ch(B) = ∅ then
7: Compute Q[T \ {B}] from Q; . Lemma 1
8: return IDENTIFY(C,T \ {B}, Q[T \ {B}])
9: else

10: throw FAIL

The revised algorithm requires checking an atomic crite-
rion at every instance of the recursive routine IDENTIFY.
This might not be crucial when the precise causal diagram
is known and the induced subgraphs preserve complete in-
formation about the c-components and the ancestral relations
between the nodes. However, it becomes significant when
the domain description is an equivalence class represented by
a PAG, in which structural information is partial.

4 PAG Properties and Q-Decomposition
Evidently, induced subgraphs of the original causal diagram
play a critical role in identification (cf Alg. 1). It is natural
to expect that in the generalized setting we study here, in-
duced subgraphs of the given PAG will also play an important
role. An immediate challenge, however, is that a subgraph of
a PAG P over V induced by A ⊆ V is, in general, not a PAG
that represents a full Markov equivalence class. In particular,
if D is a diagram in the equivalence class represented by P ,
PA is in general not the PAG that represents the equivalence
class of DA. For example, let D and P denote the diagram
and the corresponding PAG in Figure 1, respectively, and let
A = {V1, V2, X, V4}. Then, V4 is disconnected in DA while
it is a child of X in PA. Despite this subtlety, we establish
a few facts showing that for any A ⊆ V and any diagram D
in the equivalence class represented by P , some information
aboutDA, which is particularly relevant to identification, can
still be read off from PA. In [Jaber et al., 2018a], we discuss
a key property related to c-components.

Definition 2 (PC-Component). In a MAG, a PAG, or any in-
duced subgraph thereof, two nodes are in the same possible
c-component (pc-component) if there is a path between them
such that (1) all non-endpoint nodes along the path are col-
liders, and (2) none of the edges is visible.

As mentioned earlier, a c-component in a causal diagram
plays a central role in identification. The following propo-
sition establishes a graphical condition in an induced sub-
graph PA that is necessary for two nodes being in the same
c-component in DA for some diagram D represented by P .

Proposition 1. Let P be a PAG over V, andD be any causal
diagram in the equivalence class represented by P . For any
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Figure 2: Sample PAG.

X,Y ∈ A ⊆ V, if X and Y are in the same c-component in
DA, then X and Y are in the same pc-component in PA.

This result provides a sufficient condition for not belong-
ing to the same c-component in any of the induced causal dia-
grams. In the aforementioned PA of Fig. 1b, for example, V1

and V4 or X and V4 are not in the same pc-component, which
implies by Prop. 1 that they are not in the same c-component
in DA for any D in the equivalence class represented by the
PAG in Fig. 1b. As a special case of Def. 2, we define the
following notion, which will prove useful later on.

Definition 3 (DC-Component). In a MAG, a PAG, or any
induced subgraph thereof, two nodes are in the same definite
c-component (dc-component) if they are connected with a bi-
directed path, i.e. a path composed of bi-directed edges.

Next, we use the pc-component property to devise a de-
composition for Q[C] in PAGs akin to that for causal dia-
grams presented in Eq. 1. However, the decomposition in
PAGs is challenging due to the structural uncertainties; most
relevant the presence of latent confounders. For instance,
given the query Q[Y] over the PAG in Fig. 2, the sequence of
nodes 〈Y2, Y3, Y4, Y5, Y1〉 is connected with invisible edges,
which are possibly confounded. Hence, any naive decompo-
sition of Q[Y] into a product of sub-queries over subsets of Y
is invalid since we can construct a diagram in the equivalence
class which violates this decomposition.

To develop a valid decomposition, we start by introducing
the notion of a region. In short, a region is the pc-component
of a set A appended with the corresponding buckets of the
nodes. We append the pc-component set with the correspond-
ing buckets of the nodes to avoid non-identifiability of the
sub-queries since no sufficient causal information is present
within a bucket. Consider the PAG in Figure 2, and let
C = Y and A = {Y3}. Then, RC

A = {Y3, Y2, Y4, Y5} since
Y2 and Y4 are in the pc-component of Y3 and Y5 is in the
same bucket as Y4. For simplicity, we often drop C, i.e. RA,
whenever it is clear from the context. Using this construction,
we derive the decomposition in Theorem 1.

Definition 4 (Region RC
A). Given a PAG or a MAG G over

V, and A ⊆ C ⊆ V. Let the region of A with respect to C,
denoted RC

A, be the union of the buckets that contain nodes
in the pc-component of A in the induced subgraph GC.

Theorem 1. Given a PAG P over V and set C ⊆ V, Q[C]
decomposes as follows, where A ⊂ C andR(.) = RC

(.).

Q[C] =
Q[RA].Q[RC\RA

]

Q[RA ∩RC\RA
]



Back to the query Q[Y] over the PAG in Fig. 2, it can be
decomposed as follows with A = {Y3}.

Q[Y] =
Q[Y \ {Y1}].Q[{Y1, Y4, Y5}]

Q[{Y4, Y5}]
(3)

5 Identification in PAGs
We start by formally defining the notion of identification
given a PAG, which generalizes the model-specific notion
[Pearl, 2000, pp. 70].
Definition 5. Given a PAG P over V and a query Px(y)
where X,Y ⊂ V, Px(y) is identifiable given P iff Px(y) is
identifiable given every causal diagram D (represented by a
MAG) in the Markov equivalence class represented by P , and
with the same expression.

We first derive an atomic identification criterion akin to
Lemma 1. Due to the absence of any causal information
within a bucket in a PAG, it is for our purpose analogous to
a single node in a causal diagram. Therefore, the following
criterion targets a bucket X rather than a single node. Note
that a partial topological order is an order over the buckets.
A detailed discussion can be found in [Jaber et al., 2018b;
Jaber et al., 2018a].
Theorem 2. Let P denote a PAG over V, T be the union of
a subset of the buckets in P , and X ⊂ T be a bucket. Given
Pv\t, and a partial topological order B1 < · · · < Bm with
respect to PT, Q[T \X] is identifiable if and only if, in PT,
there does not exist Z ∈ X such that Z has a possible child
C /∈ X that is in the pc-component of Z. If identifiable, then
the expression is given by

Q[T \X] =
Pv\t∏

{i|Bi⊆SX} Pv\t(Bi|B(i−1))
× (4)∑

x

∏
{i|Bi⊆SX}

Pv\t(Bi|B(i−1)),

where SX =
⋃

Z∈X SZ , SZ being the dc-component of Z in
PT, and B(i−1) denoting the set of nodes preceding bucket
Bi in the partial order.

For example, consider the query Px(v\{x}) over the PAG
in Fig. 1b. The intervention node X is not in the same pc-
component with any of its possible children (V3 and V4),
hence the effect is identifiable and given by

Px(v \ {x}) =
P (v)

P (x|v1, v2)
×
∑
x′

P (x′|v1, v2)

= P (v1, v2)P (v3, v4|v1, v2, x)

Using the identification criterion in Thm. 2 and the decom-
position in Thm. 1, we formulate the procedure we call IDP,
which is shown in Alg. 2. The main idea of IDP goes as
follows. After receiving the sets X, Y, and a PAG P , the al-
gorithm pre-processes the query by computing D, the set of
possible ancestors of Y in PV\X. Then, the procedure calls
the subroutine IDENTIFY over D to compute Q[D] from the
observational distribution P (V). The recursive routine basi-
cally tests for one of two conditions. First, it checks for the

Algorithm 2 IDP(x,y) given PAG P
Input: two disjoint sets X,Y ⊂ V
Output: Expression for Px(y) or FAIL

1: Let D = An(Y)PV\X

2: Px(y) =
∑

d\y IDENTIFY(D,V, P )

3: function IDENTIFY(C, T, Q = Q[T])
4: if C = ∅ then return 1
5: if C = T then return Q

. In PT, let B denote a bucket, and let CB denote
the pc-component of B

6: if ∃B ⊂ T \C such that CB ∩ Ch(B) ⊆ B then
7: Compute Q[T \B] from Q (via Thm. 2)
8: return IDENTIFY(C,T \B, Q[T \B])

9: else if ∃B ⊂ C such thatRB 6= C then

10: return
IDENTIFY(RB,T,Q) · IDENTIFY(RC\RB

,T,Q)

IDENTIFY(RB∩RC\RB
,T,Q)

11: else
12: throw FAIL

presence of a bucket B in PT that is a subset of the inter-
vention nodes, i.e. B ⊆ T \ C, and satisfies the condition
of Thm. 2. If found, it computes Q[T \ B] using Eq. 4, and
proceeds with a recursive call. Alternatively, if such a bucket
does not exist in PT, then IDP checks for a bucket B in PC

such that the region of B with respect to C, i.e. RC
B, does not

span C. If such a bucket exists, then IDP decomposes the
query Q[C] according to Thm. 1. Finally, if both tests fail,
then IDP throws a failure condition. In [Jaber et al., 2019],
we prove that IDP is complete and we devise a graphical
characterization of non-identifiable causal effects.

5.1 Illustrative Example
Consider the effect Px(y) given PAG P in Fig. 2, where
X = {X1, X2} and Y = {Y1, Y2, Y3, Y4, Y5}. We have
D = Y, and the query reduces to computing Q[D] with
IDENTIFY(D,V, P ). Neither X1 nor X2 satisfies the con-
dition at line (6) of Alg. 2, hence IDP decomposes Q[Y],
and we have the expression derived earlier in Eq. 3.

First, with the call IDENTIFY({Y2, Y3, Y4, Y5},V, P )),
node Y1 satisfies the condition at line 6 as it has no children.
Hence, we compute Q[V \ {Y1}] from P (V) using Thm. 2.
Subsequent calls intervene on X1 then X2 and we obtain the
simplified expression.

Q[{Y2, Y3, Y4, Y5}] = P (y2, y3, y4, y5|x2) (5)

Similarly, we get the following expressions for
Q[{Y1, Y4, Y5}] and Q[{Y4, Y5}], respectively.

Q[{Y1, Y4, Y5}] = P (y1, y4, y5|x1) (6)

and,

Q[{Y4, Y5}] = P (y4, y5) (7)

Hence, the final expression for Px(y) is a result of Eqs. 5,
6, and 7 as follows.

Px(y) =
P (y2, y3, y4, y5|x2) . P (y1, y4, y5|x1)

P (y4, y5)
(8)



We can reformulate Eq. 8 using independence relations to,

Px(y) = P (y2, y3|x2, y4) · P (y1|x1, y5) · P (y4, y5)

6 Conclusion
In this work, we investigated the problem of identification
of interventional distributions in Markov equivalence classes
represented by PAGs. We first revisited the identification al-
gorithm given a specific causal diagram and reformulated it
using an atomic criterion. We then derived new graphical
properties for induced subgraphs of PAGs over an arbitrary
subset of nodes, including a novel decomposition strategy. Fi-
nally, building on these results, we proposed an identification
criterion in PAGs and employed it in a complete identification
algorithm. We believe the proposed approach enables em-
pirical researchers to perform causal reasoning while lacking
substantive background knowledge. This is considered more
“data-driven”, and more aligned with the zeitgeist in machine
learning today.
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