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Abstract
Generalizing causal effects from a controlled ex-
periment to settings beyond the particular study
population is arguably one of the central tasks
found in empirical circles. While a proper design
and careful execution of the experiment would
support, under mild conditions, the validity of
inferences about the population in which the ex-
periment was conducted, two challenges make the
extrapolation step to different populations some-
what involved, namely, transportability and sam-
pling selection bias. The former is concerned with
disparities in the distributions and causal mecha-
nisms between the domain (i.e., settings, popula-
tion, environment) where the experiment is con-
ducted and where the inferences are intended; the
latter with distortions in the sample’s proportions
due to preferential selection of units into the study.
In this paper, we investigate the assumptions and
machinery necessary for using covariate adjust-
ment to correct for the biases generated by both of
these problems, and generalize experimental data
to infer causal effects in a new domain. We derive
complete graphical conditions to determine if a
set of covariates is admissible for adjustment in
this new setting. Building on the graphical charac-
terization, we develop an efficient algorithm that
enumerates all possible admissible sets with poly-
time delay guarantee; this can be useful for when
some variables are preferred over the others due
to different costs or amenability to measurement.

1. Introduction
Scientific inferences in data-driven disciplines entail some
understanding of the laws of nature and a web of cause and

1Department of Computer Science, Purdue University, In-
diana, USA 2Computer Science Department, Iowa State Uni-
versity, IA, USA. Correspondence to: Juan D. Correa <cor-
reagr@purdue.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

effect relationships. For instance, policy-makers aiming to
improve the economical condition of a certain population
need to understand how a tax increase would affect con-
sumers’ behavior and, in turn, economic activity; or, health
scientists trying to develop a new treatment for prostate can-
cer would have to understand how their new drug interacts
with the body and affects the cancer’s progression (Pearl,
2000; Spirtes et al., 2001; Bareinboim and Pearl, 2016).

Controlled experimentation is one of the most pervasive
methods to probe for such effects, deemed the “gold stan-
dard” for scientific research in empirical circles. The main
idea is to generate a controlled environment where the be-
havior of an outcome variable can be observed under two
regimes: one where a certain condition (e.g., drug A) is
present and another where it isn’t (placebo), under the ce-
teris paribus condition. If all other factors are held constant,
intuitively, any difference in the outcome can be attributed
to the action, i.e., to a causal relationship between them.
In the medical sciences, this appears under the rubric of
Randomized Controlled Trials (RCTs). In fact, the Food
and Drug Administration (FDA) spends billions of dollars
every year to support systematic, controlled, and large-scale
experimentation (National Academy of Medicine, 2010).

Science is largely about generalization. Most experimental
findings are intended to be generalized to a broader, or even
different, target domain (in other words, population, setting,
environment). In medicine, for instance, some of the most
important pharmaceutical discoveries were first developed
and tested using rats as subjects, while the goal was to use
the results to treat humans. In psychology, college students
are usually the subject of experimentation, so as to answer
questions about human cognition, which, broadly speaking,
include subjects with and without exposure to higher educa-
tion. In many machine learning settings, agents are trained
by performing actions in simulated environments, where the
goal is to deploy these systems in other, maybe real, environ-
ment, which doesn’t match the training ground. In all these
settings, an extrapolation step from the causal distribution
where the experiment was conducted to where the inference
is intended is required. If the source distribution is such that
its conclusions can be extrapolated to the target domain, the
same is said to have external validity.

External validity has been considered one of the main re-
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search challenges by the current generation of data (empiri-
cal) scientists (Altman et al., 2001). In particular, we’ll dis-
cuss two challenges that threaten external validity, namely,
transportability and sampling selection bias.
Example 1. Greenhouse et al., discussed the challenges of gener-
alizability in the risk of suicidality among pediatric antidepressant
users. On investigating the causal relationship between antide-
pressant use and the risk of suicide attempt, the FDA performed
several RCTs, finding that youths receiving antidepressants (X)
had approximately twice the amount of suicidal thoughts and be-
haviors (Y ) compared to the control groups. These results led to a
new policy and the issue of a strict warning in the drugs’ label.

Surprisingly, following the warning, reports suggested a decrease
in the number of prescriptions and an increase in suicidal events in
the corresponding age groups. Furthermore, several observational
studies found a decrease in the risk of suicide in patients being
treated with the same antidepressants, even after adjusting for
access to mental health-care and other confounding factors.
Some of the possible explanations for this discrepancy are:

• Transportability: There is a mismatch between the study popu-
lation and the general clinical population regarding ethnicity,
race, and income (covariates named E).

• Sampling selection bias: FDA’s studies sampled from a distinct
population by excluding youths with elevated baseline risk for
suicide (B) from their cohorts.

The problem of extrapolating experimental findings across
domains that differ both in their distributions and inher-
ent causal characteristics (e.g., rats to humans) is usually
called transportability (Bareinboim and Pearl, 2016). Spe-
cial cases of transportability are found in the literature un-
der different rubrics, including “lack of external validity”
(Campbell and Stanley, 1963; Manski, 2007), “heterogene-
ity” (Höfler et al., 2010) and “meta-analysis” (Glass, 1976;
Hedges and Olkin, 1985). Issues of transportability can be
represented graphically in a causal diagram by adding a
special variable in the form of a square, T, which represents
the unobserved disparity-generating factors. For instance,
Fig. 1(a) represents the causal diagram of Example 1.

Sampling selection bias appears due to preferential exclu-
sion of units from the sample. The data-gathering process
will, therefore, reflect a distortion in the sample’s propor-
tions and, since the data is no longer a faithful representation
of the underlying population, biased estimates will be pro-
duced regardless of the number of samples collected (even
if the treatment is controlled). Different biases fall under
the umbrella of sampling selection bias, including censor-
ing, self-selection/volunteering and non-response (Hernán
et al., 2004). Selection bias can be represented graphically
through a special hollow node S, see Fig. 1(a). S can be
seen as an indicator where S=1 if a unit is included in the
sample, and S=0 otherwise (Bareinboim and Pearl, 2012).

Our goal here is to explicate the general principle that li-
censes extrapolation across settings when issues of trans-
portability and selection bias are both present. We’ll ad-
dress this problem using the covariate adjustment technique
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(b) (see example 2)

Figure 1. Selection diagrams with T and S nodes indicating differ-
ences between populations and the sampling selection mechanism.

(Pearl, 2000). Adjusting by a set of covariates is arguably
the most widely used technique for causal effects estimation.
Although usually used to control for confounding bias in
observational data, it has recently been shown to be suitable
to control for when selection bias is present as well (Correa
and Bareinboim, 2017; Correa et al., 2018).

In this paper, we investigate the challenge of estimating
causal effects when the input distribution is experimental,
plagued with selection bias, and collected from a popula-
tion that is structurally different than the one where the
inferences are intended. We introduce a covariate adjust-
ment formulation to overcome the challenges due to both
transportability and selection bias. More specifically, our
contributions are as follows:

1. Generalization Adjustment Formula. We introduce
a covariate adjustment formulation that uses selection-
biased experimental data from a source population and
unbiased data from a target population, to produce an
unbiased and valid estimand of a target causal effect.

2. Graphical Characterization. We prove a necessary
and sufficient graphical condition for the admissibility
of a set of covariates for this adjustment.

3. Algorithmic Characterization. We develop a com-
plete algorithm that runs with polynomial delay and
enumerates all sets suitable for adjustment according
to the causal distribution and model, from which the
researcher can pick with arbitrary criteria (e.g., low
measurement cost, higher statistical precision).

2. Preliminaries and Related Work
Structural Causal Models. The systematic analysis of
transportability and selection bias requires a formal lan-
guage where the characterization of the underlying data-
generating model can be encoded explicitly. We use the
language of Structural Causal Models (SCMs) (Pearl, 2000).
Formally, a SCM M is a 4-tuple 〈U,V, F, P (u)〉, where
U is a set of exogenous (latent) variables and V is a set of
endogenous (measured) variables. F represents a collection
of functions such that each variable Vi ∈ V is determined
by fi ∈ F , where fi is a mapping from the respective do-
main of Ui ∪ Pai to Vi, Ui ⊆ U, Pai ⊆ V\{Vi}, and the
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entire set F forms a mapping from U to V. Uncertainty is
encoded through a probability distribution over the exoge-
nous variables, P (u). We will denote variables by capital
letters, and their realized values by small letters. Sets of
variables are denoted in bold.

Within the structural semantics, performing an ac-
tion/intervention of setting X=x is represented through
the do-operator, do(X=x), which encodes the operation of
replacing the original equation of X by the constant x induc-
ing a submodel Mx and an experimental distribution Px(v).
An experiment can be thought of as physically replacing
this equation by assigning a treatment, instead of letting it
occur naturally. The causal effect of X on a set of variables
Y is defined as Px(y), that is, the distribution over Y in
the intervened model Mx. We will also use do-calculus to
derive causal expressions from other causal quantities. For
a detailed discussion of SCMs and do-calculus, we refer
readers to (Pearl, 2000).

Every SCM M induces a causal diagram G represented
as a directed acyclic graph where every variable Vi ∈ V
is a vertex, and there exists a directed edge from every
variable in Pai to Vi. Also, for every pair Vi,Vj∈V such
that Ui∩Uj 6=∅, there exists a bidirected edge between Vi
and Vj . A distribution is said to be compatible with G if it
could be generated by an SCM that induces G. We denote
as GXZ the graph resulting from removing all incoming
edges to X and all outgoing edges from Z in G. We use
typical graph-theoretic terminology with the abbreviations
Pa(C),De(C), An(C), which stand for the union of C and
its parents, descendants, and ancestors, respectively. The
expression (X ⊥⊥Y | Z)G denotes that X is independent
of Y given Z in the graph G according to the d-separation
criterion (Pearl, 2000) (subscript G may be omitted).

Transportability. Transportability theory is concerned with
the conditions under which experimental data from one en-
vironment (π) can be used to establish a causal quantity
in a different domain (π∗), while π and π∗ are different
but somewhat related domains, that is, assessing the causal
effect of X on Y in the target domain (i.e., P ∗x (y)) using
measurements over a set of variables under experiments in
a different environment (i.e., Px(v)). Different conditions
were studied in the literature, for instance, in (Pearl and
Bareinboim, 2011; Bareinboim et al., 2013; Bareinboim
and Pearl, 2014). The first critical component of any trans-
portability analysis is to formally express the assumptions
about the differences between the domains of interest. In
particular, the overlapping of two causal diagrams is used to
express such difference, which is called selection diagram.

Definition 1 (Selection Diagram (Bareinboim and Pearl,
2014)). Let 〈M,M∗〉 be a pair of SCMs relative to domains
〈π, π∗〉, sharing a diagram G. 〈M,M∗〉 induces a selection
diagramD consisting of G plus extra variables Ti with edge

Ti → Vi whenever there might exist a discrepancy fi 6= f∗i
or P (Ui) 6= P ∗(Ui) between M and M∗.

We employ special indicator variables T, drawn as squares
to represent differences between the source and target popu-
lations, pointing to the variables that are affected by unob-
served factors (causal mechanism or distribution) that are
distinct across settings (e.g., see Fig. 1). As for selection
bias, we use an indicator variable S (drawn round with dou-
ble border) that is pointed to by every variable that affects
the process by which a unit is included in the data.

Covariate Adjustment. Adjusting by a set of covariates is
arguably the most common technique used to identify causal
effects from an observational distribution P (v), namely:

Definition 2 (Adjustment (Pearl, 2000)). Given a causal
diagram G over variables V and sets X,Y,Z ⊆ V, the set
Z is called covariate adjustment for estimating the causal
effect of X on Y (or, usually, just adjustment), if for every
distribution P (v) compatible with G, it holds that

Px(y) =
∑

z
P (y | x, z)P (z). (1)

In other words, the distribution P (z) is used to re-weight
the z-specific distributions P (y | x, z); for sets Z satisfying
certain conditions (e.g., that would account for confounding
bias), this mapping corresponds to the causal effect Px(y).

Several criteria have been developed to determine whether
a set Z is admissible for adjustment (Shpitser et al., 2010;
Perković et al., 2015; 2018), including the celebrated “Back-
door criterion” (Pearl, 1993; 2000; Pearl and Paz, 2013),
namely:

Definition 3 (Backdoor Criterion). A set of variables Z sat-
isfies the Backdoor Criterion relative to a pair of variables
(X,Y) in a causal diagram G if:

(i) No node in Z is a descendant of X, and
(ii) Z blocks every path between X and Y that contains

an arrow into X.

Intuitively, this criterion identifies the variables that when
conditioned on, block the “back-door” paths in the graph
(those with arrows coming into X that carry spurious corre-
lation), while keeping the causal paths unperturbed.

Covariate adjustment has been commonly used to control for
confounding bias, nevertheless, some recent work demon-
strated the validity of this technique to control for both
confounding and selection biases (Correa and Bareinboim,
2017; Correa et al., 2018). As mentioned before, in the set-
ting of this paper, the goal is not to control for confounding
bias (solved by randomization), but for selection bias and
transportability.
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3. Generalizing Experimental Findings
through Adjustment

A properly carried-out experiment will effectively control
for confounding bias, and the resulting effect of the treat-
ment X on the outcome Y will be valid for the population
represented in the experiment, i.e., domain π. In most cases,
as discussed earlier, the goal is not to make statements only
about the units involved in the experiment, but to generalize
the findings to a (usually much) larger and possibly differ-
ent population (domain π∗). Invalid conclusions about the
target population will be reached if the generalization biases
are left uncontrolled. In other words, Px(y), obtained in
π may differ significantly from P ∗x (y), the corresponding
causal quantity for the target population π∗.

Recall that we consider two challenges related to the gen-
eralizability of experimental findings, transportability and
selection bias. For instance, consider the selection diagram
in Fig. 1(a) corresponding to the situation described in Ex-
ample 1. Background factors (E) affect both the use of
antidepressants (X) and the formation of suicidal thoughts
and behaviors (Y ). The transportability node T pointing to
E encodes the assumption that there is a discrepancy in the
distributions of background factors between the population
from the study and the target group of youths. Baseline risk
for suicide (B), which affects both X and Y , also affects
the inclusion of subjects into the randomized trials. This
selective sampling process is encoded in the graph through
the edge from B to the selection indicator S.

The aim here is to obtain the effect P ∗x (y) in domain π∗

(general population) from the data Px(y, b, e|S=1) coming
from the domain π (controlled groups). In practice, experi-
mental data from the source domain may be insufficient to
identify the target effect. Still, it’s not uncommon that non-
experimental, unbiased data may be available in the target
population, at least over some subset of the variables, W
(i.e., P ∗(w)). In these situations, the covariate adjustment
technique provides a natural way of combining data from
the two domains. For the model in Fig. 1(a), if P ∗(b, e)
is available in the target population, then the target effect
P ∗x (y) can be computed by combining Px(y, b, e|S=1) with
P ∗(b, e) in an adjustment expression, namely,

P ∗x (y) =
∑

b,e
Px(y | b, e, S = 1)P ∗(b, e), (2)

which will be proved later on in this section (Thm. 1).

A summary of this setting is provided in Fig. 2. In words,
our task is: Given qualitative causal assumptions in the
form of a selection diagramD, and given data Px(v|S = 1)
in domain π and P ∗(w) in domain π∗, determine if Q =
P ∗x (y) is estimable by adjustment on a set Z ⊆W ⊂ V.
Specifically, we are looking for sufficient and necessary

π

π∗

D

Px(v | S=1)

P ∗(w)P ∗x (y)

∑
z Px(y | z, S=1)P ∗(z)

Controlled environment, Sample Selection Bias

Natural environment, No Selection Bias

?

Figure 2. Summary of the task (see text for description).

conditions to determine if it holds that

P ∗x (y) =
∑

z
Px(y | z, S = 1)P ∗(z), (3)

based on the assumptions encoded in a selection diagramD.
The right hand side of Eq. (3) contains two terms correspond-
ing to different distributions – the first is the experimental
one from the source (π) that may be affected by selection
bias; the second is the distribution over a set of covariates
measured in the target domain (π∗).

One may surmise that it’s possible to get away by adjusting
only for pre-treatment covariates, as customary in backdoor
problems. However, adjusting for descendants of the treat-
ment may be required to account for selection bias. To
witness, consider the following scenario.

Example 2. A randomized clinical trial is performed to
measure the effect of a gene therapy (X) on a certain type of
leukemia (Y ). The selection diagram in Fig. 1(b) represents
the corresponding causal model. One common side effect
of X is the decrease in blood cells (Z2), which in turn can
affect the development of symptoms such as anemia and
serious infections (Z3). These symptoms are also caused by
other background factors such as genetics, age, and family
history (say Z1). Outside the study, these factors affect
the propensity of individuals choosing the treatment, and
the outcome. There are also unmeasured factors affecting
people using the treatment and developing the symptoms
(X L9999K Z3) as well as latent variables that affect the
symptoms and the outcome (Z3 L9999K Y ).

Due to the development of severe symptoms, subjects may
drop from the study or be unable to attend the follow up
consultations, resulting in their data being dropped from the
study (S = 0). Considering only data from cases that did
not drop out may lead to selection bias. Similarly, depending
on the conditions of the study, the target population may
differ in background factors compared to the units in the
experiment. The possibility of such differences is accounted
for by the transportability node T pointing to Z1.

If one adjusts only for the set Z = {Z1} to control for the
transportability issue, there is still selection bias due to an
active (open) path S ← Z3 L9999K Y .
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It seems Z3 is needed if selection bias is to be controlled
as well. However, adjusting for some descendant of X
may induce spurious correlation between X and Y. In this
case, conditioning on Z3 induces a non-causal correlation
between X and Y, through, e.g., X L9999K Z3 L9999K Y .

For convenience, when considering a set Z and treatment
X, let Znd = Z \De(X) denote the non-descendants of X
in Z, and Zd = Z ∩ De(X) denote the descendants of X.
It turns out that conditioning on variables from Zd that are
independent of the outcome Y given Znd in the experimen-
tal distribution does not introduce spurious correlation into
the adjustment. On the other hand, we need to pay special
attention to those variables in Zd d-connected with Y in the
interventional graph GX (given X), that we will denote as

Zp =
{
Z ∈ Zd

∣∣∣ (Z ⊥6⊥Y | Znd,X)GX

}
. (4)

We now introduce a graphical condition to characterize the
sets Z that yield valid adjustments for Q = P ∗x (y), i.e.:

Definition 4 (Generalization Adjustment (st-adjustment)
Criterion (singleton treatment)). Given a selection diagram
D with transportability and selection bias variables, respec-
tively, T and S, relative to domains π and π∗, a treatment
X , and disjoint sets Y,Z ⊂ V, the set Z is said to satisfy
the st-adjustment criterion relative to (X,Y) in D if

(i) The variables in Zp are independent of the treatment
given all other covariates, i.e., (Zp ⊥⊥X | Z \ Zp).

(ii) The outcome is independent of the transportability
nodes and the selection bias mechanism given the co-
variates and X , i.e., (Y ⊥⊥T, S | Z, X)DX

.

Since the variables in Zp are correlated with the outcome
(by definition), the first condition requires them to be inde-
pendent of the treatment X , given the other covariates, so as
to prevent spurious correlation or the disturbance of causal
paths when employing such variables. The second condi-
tion accounts for the generalizability issues – it requires the
outcome to be independent of the transportability (T ) and
selection bias nodes (S) in the effect specific to the levels
of the set Z; the criterion owes its name, st-adjustment, to
this condition. In contrast to similar criteria, no condition
is required for controlling confounding due to the experi-
mental nature of the data. To build intuition on reading the
conditions, consider the following examples:

Example 3. Recall the selection diagram in Fig. 1(a) and
consider the set Z = {B,E}. It turns out that Zp = ∅
since neither B nor E are descendants of X , so the first
condition is satisfied. For the second, one can immediately
verify that (Y ⊥⊥ T, S | B,E,X)DX

holds.

Example 4. Consider the diagram in Fig. 1(b). For the set
Z = {Z1}, condition (i) is trivially satisfied because Zp =
∅. However, there is an active path S ← Z3 L9999K Y that
violates (ii). In fact, Z3 needs to be included in Z, but then

(Z3⊥6⊥X | Z1) because of the directed pathX → Z2 → Z3.
We have to include Z2 in Z to block this path, which leads
to the same Zp, but now there is still a path X L9999K Z3

that violates the first condition. It turns out, there is no set
Z satisfying the criterion for this case. If the bidirected edge
between X and Z3 (shown in red color) was not present,
(Z3 ⊥⊥X | Z1, Z2) would hold and (as we will show next)

P ∗x (y)=
∑

z1,z2,z3

Px(y|z1, z2, z3, S=1)P ∗(z1, z2, z3). (5)

We show next that the st-adjustment criterion licenses, and
it’s also necessary for, the extrapolation of causal findings
from a source to a target domain through covariate adjust-
ment on a set Z in the context of singleton treatments.

Theorem 1 (st-adjustment (singleton treatment)). Given a
selection diagram D, a singleton X , and disjoint sets Y
and Z, the causal effect P ∗x (y) is given by

P ∗x (y) =
∑

z
Px(y | z, S=1)P ∗(z) (6)

if and only if Z satisfies the st-adjustment criterion relative
to (X,Y).

The proof for Thm. 1 will be given as a lemma (Lemma. 1)
after stating a more general st-adjustment theorem (Thm. 3)
in the next section. All proofs are provided in the appendix.

Example 5. As discussed in Example 3, the set {B,E}
satisfies the st-adjustment criterion relative to (X,Y ) in
the diagram Fig. 1(a), which implies that P ∗x (y) is given
by Eq. (2), following Thm. 1. In words, the assumptions
encoded in D license the extrapolation of the causal dis-
tribution – experiments on the effect of antidepressants on
suicide risk carried out in RCTs (source) to a target popula-
tion consisting of the general clinical population of youths
with depression – combining the conditional effect segre-
gated by each stratum of B,E (baseline risk for suicide and
background factors), re-weighted by the probability of each
level of those variables as observed in the target domain.

Example 6. For a case such as Fig. 1(b), where no set
Z satisfies the criterion, Thm. 1 states that for any model
consistent with the assumptions in D, no adjustment in the
form of Eq. (6) gives a correct estimation of the target effect.

4. Adjusting for Multiple Treatments
Even though controlling for one treatment variable at a time
may be sufficient in some applications, in practice, there
are settings where multiple factors need to be tested con-
currently. In this section, we address more challenging
settings involving causal effects of multiple treatment vari-
ables. For example, in online marketing, experiments are
used to test the effectiveness of a combination of variables
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such as content position, media, and audience, on user in-
teraction, clicks, or conversion. Due to cost and number of
user participation required to carry out these experiments,
it is desirable to be able to generalize them to alternative
audiences and correct for sampling issues.

To handle multiple treatments, adjusting for the descendants
of X may again induce spurious correlation between X
and Y. More attention is needed to the variables in Zp

(defined in Eq. (4)) and how they are related to the multiple
treatments X. Consider the two models in Fig. 3 and set Z =
{Z1, Z2, Z3, Z4}1 leading to Zp = {Z2, Z4}. Note that
Zp is not independent of X = {X1, X2} given Z\Zp =
{Z1, Z3} in either one of the diagrams, hence condition (i)
of Def. 4 fails in both cases. Even so, there is a subtle
difference between the two models: while adjusting for Z
is not valid in Fig. 3(a), it is guaranteed to yield P ∗x (y) in
Fig. 3(b). To witness, note that P ∗x (y) can be derived as

P ∗x (y)

= P ∗x (y)
∑

z1
P ∗(z1) (7)

=
∑

z1
P ∗x (y|z1)P ∗(z1) (8)

=
∑

z1,z2
P ∗x (y|z1, z2)P ∗x (z2|z1)P ∗(z1) (9)

=
∑

z1,z2
P ∗x (y|z1, z2)P ∗(z1, z2) (10)

=
∑

z1,z2,z3
P ∗x (y|z1, z2, z3)P ∗(z1, z2, z3) (11)

=
∑

z
P ∗x (y|z)P ∗x (z4|z1, z2, z3)P ∗(z1, z2, z3) (12)

=
∑

z
P ∗x (y|z)P ∗(z) (13)

=
∑

z
Px(y|z, S = 1)P ∗(z) (14)

In the derivation above, we first introduced Z1 into the
adjustment (Eq.(7)) using the fact that it was independent of
Y given X in DX, hence it does not introduce any spurious
correlation (8). Next, we added Z2 by conditioning (9), and
sinceX2 has no effect on {Z1, Z2}, Px(z2 | z1) = Px1

(z2 |
z1). Also, givenZ1,Z2 is independent ofX1, so no spurious
correlation is added (10). Similarly, Z1, Z3 is independent
of Y given the already introduced {Z1, Z2} (11). Finally,
Z4 is independent of {X1, X2} given {Z1, Z2, Z3} (13).
After both Z2 and Z4 have been adjusted for, the outcome
is independent of the selection mechanism S, and the causal
effect can be expressed in the form of the st-adjustment (14).

Remarkably, no other set Z is valid for adjustment in this
model, and the steps described can only be performed in the
given order. As a matter of fact, the reason why Z will not
work for Fig. 3(a) is that in the last step, we have a distri-
bution Px(Z4|Z1, Z2, Z3) and since X1 has a causal effect

1The two selection diagrams do not have T nodes, meaning
the populations are the same in source and target domains with
only selection bias issue occurring.

X1

Z1

Z2

Y

X2

Z3

Z4

S
(a) No order over Z1, Z2, Z3,
Z4 is suitable for adjustment.

X1

Z1

Z2

Y

X2

Z3

Z4

S
(b) Order Z1<Z2<Z3<Z4 is
suitable for adjustment.

Figure 3. Models with multiple treatment variables X={X1, X2}.

over {Z1, Z2}, this conditional probability is not guaran-
teed to be equal to Px2(Z4|Z1, Z2, Z3), if it was, we could
employ (Z4 ⊥⊥X2 | Z1, Z2, Z3) to finish the derivation. A
symmetric problem with Z2 arises If we change the order
so that Z4 is added before {Z1, Z2}.

To solve the generalization of experimental findings across
domains, it turns out to be helpful to first deal with the
generalization in the same domain. That is, what are the
conditions for the causal effect P ∗x (y) to be computable in
the form of Eq. (13). In practical applications, this may be
an interesting question by itself. For example, consider set-
tings where covariate-specific causal effects are measured,
such as experiments where the units are separated in groups
according to a combination of variables and studied indepen-
dently. We could use adjustment in Eq. (13) to compute an
average causal effect combining such experimental results.
The following definition characterizes the adjustment sets
that allow this extrapolation to take place.

Definition 5 (Experimental Adjustment (e-adjustment) Cri-
terion). Given a causal diagram G and disjoint X,Y,Z ⊂
V, Z is said to satisfy the e-adjustment criterion relative to
(X,Y) in G if there exists an order over Z: Z1<Z2< · · · ,
such that Znd<Zd, and for each Zi ∈ Zd we have(

Zi ⊥⊥Y | Z≤i−1,X
)
GX

, or (15)(
Zi ⊥⊥X | Z≤i−1

)
G
X(Z≤i−1)

, (16)

where Z≤i denotes the set {Z1, . . . , Zi}.

Note that although it may seem computationally expensive
to determine the existence of an order over Z satisfying
e-adjustment, we will show in Section 4.1 that this can in
fact be verified efficiently. Also, if Zp is empty, Def. 5 is
trivially satisfied. The following theorem ties the definition
of e-adjustment with the adjustment expression.

Theorem 2. Given a causal diagram G and disjoint sets of
variables X,Y,Z ⊂ V, the distribution Px(y) is given by
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Px(y) =
∑

z
Px(y | z)P (z) (17)

if and only if Z satisfies the e-adjustment criterion relative
to (X,Y).

Leveraging e-adjustment, the definition below will char-
acterize the adjustment sets that will allow generalizing
experiments across domains with multiple treatments.

Definition 6 (st-adjustment criterion (multiple treatments)).
Given a selection diagram D with transportability and se-
lection bias variables, respectively, T and S, relative to
domains π and π∗, and disjoint sets X,Y,Z ⊂ V, the set
Z is said to satisfy the st-adjustment criterion relative to
(X,Y) in D if

(i) Z satisfies the e-adjustment criterion (Def. 5), and
(ii) (Y ⊥⊥T, S | Z,X)DX

.

Theorem 3. Given a selection diagram D and disjoint sets
of variables X, Y, Z, the causal effect P ∗x (y) is given by

P ∗x (y) =
∑

z
Px(y | z, S=1)P ∗(z) (18)

if and only if Z satisfies the st-adjustment criterion relative
to (X,Y).

Example 7. In Fig. 3(b), the set Z = {Z1, Z2, Z3, Z4}
satisfies the st-adjustment criterion with order Z1 < Z2 <
Z3 < Z4. Therefore P ∗x1,x2

(y) can be computed by Eq. (18)
as explicitly derived in Eqs. (7)-(14).

From Thm. 3, the st-adjustment criterion provides a com-
plete characterization of valid adjustment sets. Next we
discuss some special situations that may be of practical in-
terests. First given Thm. 3, the following lemma provides a
proof for the single treatment case in Thm. 1.

Lemma 1. When X is a singleton, Definition. 6 is equiva-
lent to Definition. 4.

Consider adjusting for only pre-treatment variables, which
is often what many practitioners are looking for due to the
wide use of the Backdoor Criterion. In fact, if Z contains no
descendants of X then it trivially satisfies the e-adjustment
criterion. The result below immediately follows.

Proposition 1. If Z∩De(X)=∅, and (Y⊥⊥T, S|Z,X)DX
,

then Z satisfies the st-adjustment criterion w.r.t. (X,Y).

Finally in situations where there is no selection bias prob-
lem (only transportability issues), we can safely restrict
our attention to covariates that are non-descendants of the
treatment X, as shown in the following statement.

Theorem 4. In the absence of selection bias (i.e., S node
disconnected from any other variable), if a set Z satisfies
st-adjustment and Z∩De(X) 6= ∅, then there exists Z′ ⊆ Z
such that Z′ ∩De(X) = ∅ and Z′ satisfies st-adjustment.

X2

X1

Y1

Y2

A

B

R

S

D

T

Figure 4. Example where the target effect is Px1,x2(y1, y2).

Algorithm 1 IsEAdmissible(G,X,Y,Z)
Input: causal diagram G, disjoint subsets X,Y,Z ⊆ V.
Output: true if Z satisfies e-adjustment, false otherwise.
1: if Z ∩De(X) = ∅ then
2: return true
3: end if
4: for each Z ∈ Z∩De(X) do
5: if (Z ⊥⊥Y | Z \ {Z},X)G

X
or

(Z ⊥⊥X | Z \ {Z})G
X(Z\{Z})

then
6: return IsEAdmissible(G,X,Y,Z \ {Z})
7: end if
8: end for
9: return false

Example 8. Consider the model in Fig. 4 where the target
query is Q=Px1,x2

(y1, y2). Thm. 3 licenses adjustment for
the set {D,B,A}. We have that D,B are non-descendants
of X, an order D < B < A such that A satisfies
(A⊥⊥Y1, Y2 | D,B,X1, X2)DX1,X2

), and (Y1, Y2⊥⊥T, S |
D,B,A,X1, X2)DX1,X2

.

Another valid set is {B,D}, which satisfies Proposition 1
since we have (Y1, Y2 ⊥⊥ T, S | B,D,X1, X2)DX1,X2

.

4.1. Verifying e-adjustment Efficiently

Evaluating condition (i) of the st-adjustment (Def. 6), that
is, the existence of an order over Z satisfying e-adjustment
(Def. 5), may seem computationally hard. However, we will
show in this section that in fact it can be verified efficiently,
by establishing first some properties of e-adjustment.

Lemma 2. A set Z satisfies e-adjustment if and only if
there exists Zi ∈ Z such that Zi satisfies (15) or (16), and
Z \ {Zi} satisfies e-adjustment.

Lemma 2 provides a recursive characterization of the order
condition. Based on this result, we can verify the existence
of an order by finding, at each step, any variable satisfying
(15) or (16) in the set and removing it, as described next:

Lemma 3. If Z satisfies e-adjustment, then for any Zi ∈
Z satisfying (15) or (16), the set Z\{Zi} satisfies e-
adjustment.
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Leveraging these results, we introduce an algorithm called
IsEAdmissible (Alg. 1) that efficiently checks if Z satisfies
the e-adjustment criterion.

Theorem 5. Z satisfies e-adjustment (Def. 5) w.r.t. (X,Y)
in G if and only if IsEAdmissible (Alg. 1) returns true.

To illustrate how IsEAdmissible works, consider again the
diagram in Fig. 3(b) with the set {Z1, Z2, Z3, Z4}. Line 5
will evaluate true only for Z4, then the process reduces
to verifying if {Z1, Z2, Z3} has an order. Next, the same
condition will evaluate true for Z3 reducing the problem
to {Z1, Z2}. The process continues by removing Z2 and
after removing Z1 the condition on line 1 is satisfied, so
line 2 executes and returns true. In the case of Fig. 3(a) also
with {Z1, Z2, Z3, Z4}, none of the variables in the set will
satisfy the condition in line 5 and line 9 returns false.

Let n and m stand, respectively, for the number of variables
and edges in the graph. Then IsEAdmissible performs at
most n2 − n conditional independence tests. Constructing
the graphs GX and G

X(Z\{Z}), as well as determining the
descendants of X is achievable in O(n+m) time. Testing
an independence in the graph can be done in O(n + m)
(van der Zander et al., 2014). Therefore, the overall time
complexity of IsEAdmissible is O(n2(n+m)).

5. Enumerating Valid Sets for st-adjustment
Armed with a graphical condition to test if a set Z is valid for
adjustment, the natural question is how to find sets satisfy-
ing the st-adjustment criterion systematically, as efficiently
as possible. In practice, what variables are suitable for ad-
justment may be determined by factors such as feasibility,
cost and effort required to measure such variables, as well
as the quality and number of obtainable samples. In this
paper, we assume data is available in the target domain over
a set W of variables (see Fig. 2) and our task here is to list
all sets Z ⊆W satisfying the st-adjustment.

The number of sets satisfying the st-adjustment is possibly
exponential depending on the topology of the diagram and
the target effect. In this sense, it is impossible to construct a
procedure that runs in polynomial time since just outputting
an exponential number of answers takes exponential time.

Under these conditions, the best guarantee we can provide
is that the time to output the first valid set or indicate fail (if
there is no satisfying set), and the time between consecutive
outputs, is polynomial. Algorithms with this property are
said to run with polynomial delay (Takata, 2010).

We have developed the algorithm ListGAdjSets (Alg. 2)
which systematically lists valid adjustment sets, using the
recursive subroutine ListGAdjIR. ListGAdjIR outputs all
sets Z, I ⊆ Z ⊆ R, that satisfy the st-adjustment. At
each step, it chooses a variable A and splits the problem

Algorithm 2 ListGAdjSets(D,X,Y,W)

Input: selection diagram D over variables V and indicators T,
S; disjoint subsets of X,Y,W ⊆ V.

Output: list of subsets Z1,Z2, . . . ,Zk ⊆W satisfying def. 6
1: F← De

(
(De(X)D

X
\X) ∩An(Y)D

X

)
2: R←W \ (X ∪Y ∪ F)
3: ListGAdjIR(D,X,Y,T, S, ∅,R)

function ListGAdjIR(D,X,Y, I,R)

4: if ExistsSep(DX,T ∪ {S},Y, I,R) then
5: if I = R then
6: output I
7: else
8: A← variable from (R \ I) such that

A /∈ De(X), else
(A⊥⊥Y | I,X)D

X
, else

IsEAdmissible(D,X,Y, I ∪ {A})
9: if A exists then

10: ListGAdjIR(D,X,Y, I ∪ {A},R)
11: ListGAdjIR(D,X,Y, I,R \ {A})
12: else
13: ListGAdjIR(D,X,Y, I, I)
14: end if
15: end if
16: end if

into two: listing sets containing A (line 10) and those with
no A (line 11), while pruning branches yielding no valid
sets (lines 4,13). This strategy is similar to those used in
(Takata, 2010), (van der Zander et al., 2014), and (Correa
et al., 2018) for listing separating sets in a graph. Here, it
has been augmented to recognize the conditions in Def. 6
(See appendix. B for details).

Theorem 6. ListGAdjSets on input D,X,Y,W, lists all
sets Z ⊆W satisfying st-adjustment relative to X,Y in D,
with O(n4(n+m)) delay.

6. Conclusions
We study in this paper the problem of generalizing exper-
imental findings across heterogeneous populations using
the language of causal models. We introduced necessary
and sufficient graphical conditions (Defs. 4,6) to decide
whether biased experimental distributions can be used to
infer a causal effect in a different population by adjusting
for a set of covariates measured in that target population
(Thms. 1,3). We further developed efficient algorithms to
test whether a set of covariates is admissible for adjustment
(Alg. 1) and to list all admissible sets, subject to the available
measurements (Alg. 2). Experiments are, almost invariably,
performed with the intent of being used outside the “labora-
tory” setting (i.e., the source population), so we hope that
this work can be helpful for data scientists to understand,
model, and solve the challenging issues of generalizability
of experimental findings across disparate settings.
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A. Appendix: Proofs in Section 4
A.1. Proof for Theorem 2

Theorem 2. Given a causal diagram G and disjoint sets of
variables X,Y,Z ⊂ V, the distribution Px(y) is given by

Px(y) =
∑

z
Px(y | z)P (z) (17)

if and only if Z satisfies the e-adjustment criterion relative
to (X,Y).

Proof. (if) Let Z1 < · · · < Zm be such order, then we
have:

Px(y) =
∑
z≤j

Px

(
y | z≤j

)
Px

(
z≤j
)

(19)

=
∑
z≤j

Px

(
y | z≤j

)
P
(
z≤j
)
, (20)

where eq. (19) follows from summing over the set Z≤j, and
eq. (20) from using rule 3 of do-calculus licensed by the
fact that no element in Z≤j is a descendant of X, hence the
intervention on X can be removed from the second term.

Let i ≥ j, we will show by induction on i that

Px(y) =
∑
z≤i

Px

(
y | z≤i

)
P
(
z≤i
)
. (21)

The base case, i = j, is given by eq. (20). Now suppose this
is true for i−1, we will demonstrate it holds for i.

By inductive hypothesis:

Px(y) =
∑
z≤i−1

Px

(
y | z≤i−1

)
P
(
z≤i−1

)
(22)

If (15) holds for Zi:

Px(y) =
∑
z≤i−1

Px

(
y | z≤i−1

)∑
zi

P
(
z≤i
)

(23)

=
∑
z≤i−1

Px

(
y | z≤i

)∑
zi

P ∗
(
z≤i
)

(24)

=
∑
z≤i

Px

(
y | z≤i

)
P
(
z≤i
)

(25)

If (16) is the independence that holds:

Px(y) =
∑
z≤i−1

∑
zi

Px

(
y | z≤i

)
Px

(
zi | z≤i

)
P
(
z≤i−1

)
(26)

=
∑
z≤i

Px

(
y | z≤i

)
P
(
zi | z≤i

)
P
(
z≤i−1

)
(27)

=
∑
z≤i

Px

(
y | z≤i

)
P
(
z≤i
)

(28)

Whatever the case, eq. (21) is proven correct. For i = m
(all variables in Z), the effect is equal to the expression
given by e-adjustment.

(only if) To show the necessity of the criterion we
will prove that whenever its conditions fail, we can find a
model inducing G where the causal distribution Px(y) is
different than

∑
z Px (y | z)P (z).

Consider the right hand side of (17) the first factor in the
sum is equal to

Px(y | z) =
Px(y, z)

Px(z)
(29)

=
Px(y, znd)Px(z0|y, znd)Px(zp|y, znd, z0)

Px(znd)Px(z0|znd)Px(zp|znd, z0)
(30)

Since Z0 is not in Zp, it must be the case that (Z0 ⊥⊥
Y | Znd,X)GX , hence Px(z0|y, znd) = Px(z0|znd) and
that term can be simplied because it also appears in the
denominator, leading to

=
Px(y, znd)Px(zp|y, znd, z0)
Px(znd)Px(zp|znd, z0)

, (31)

and the second factor

P (z) = P (znd)P (z0|znd)P (zp|znd, z0). (32)

When replacing (31) and (32) in the right hand side of (17),
the term P (znd) in both expressions cancels out. Rearrang-
ing some factors yields:∑

z

Px(y, znd)P (z0|znd)
Px(zp|y, znd, z0)
Px(zp|znd, z0)

P (zp|znd, z0).

(33)
Moving inwards the sums over Zp and Z0, and letting

h(x,y, znd, z0) =
∑
zp

Px(zp|y, znd, z0)
Px(zp|znd, z0)

P (zp|znd, z0),

(34)

we have:∑
znd

Px(y, znd)
∑
z0

P (z0|znd)h(x,y, znd, z0). (35)
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Now, let

g(x,y, znd) =
∑
z0

P (z0|znd)h(x,y, znd, z0), (36)

then the adjustment functional can be written as∑
znd

Px(y, znd)g(x,y, znd). (37)

The three terms in h(x,y, znd, z0):

Px(zp|y, znd, z0), (38)
Px(zp|znd, z0), and (39)
P (zp|znd, z0).; (40)

are very similar and, by definition, we have that (Zp ⊥6⊥Y |
Znd,Z0,X)GX and we can find a model such that (38) is
not equal to (39) for at least one zp. Not satisfying this
condition also implies that (39) is not equal to (40), to prove
this, suppose this is not the case, then: there exists an order
over Zp, such that:

P (zp|znd, z0) =
∏

{i|Zi∈Zp}

P
(
zi|znd, z0, z≤i−1p

)
(41)

=
∏

{i|Zi∈Zp}

Px

(
zi|znd, z0, z≤i−1p

)
(42)

= Px(zp | znd, z0). (43)

For each factor in (41) to be equal to each factor in (42) the
independence (Zi⊥⊥X | Znd,Z0,Z

≤i−1
p )G

X(Znd,Z0,Z
≤i−1
p )

must hold. In this case we can construct an order over Z
that satisfies the condition in the theorem by appending
Znd < Z0 < Zp.

Accordingly, we can construct a model such that the terms
(38), (39) and (40) are all distinct for at least one configura-
tion zp. Hence, a model such that h(x,y, znd, z0) 6= 1
for each possible assignment z0, znd. Then, the term
g(x,y, znd) 6= 1 for each assignment znd, then the sum in
equation (37) is different to Px(y).

A.2. Proof for Theorem 3

To prove this theorem we will use the following definitions
and results:

Definition 7 (Generalized Adjustment Criterion (Correa and
Bareinboim, 2017; Correa et al., 2018)). Given a causal
diagram G augmented with selection bias variable S and
disjoint sets of variables X,Y,Z ⊆ V; Z satisfies the
criterion relative to X,Y in G if:

(i) Z ∩Dpcp(X,Y) = ∅,

(ii) (Y ⊥⊥X | Z, S)Gpbd
XY

, and
(iii) (Y ⊥⊥ S | X,Z).

Lemma 4 (Selection Bias Adjustment Criterion (Correa
and Bareinboim, 2017; Correa et al., 2018)). Given G a
causal diagram augmented with a variable S, Z and a pair
of disjoint sets of variables X,Y ⊆ V,

Px(y) =
∑

z
P (y | x, z, S=1)P (z), (44)

holds in every model inducing G if and only if Z satisfy
definition 7 relative to X,Y.

Definition 8 (Adjustment Criterion (Shpitser et al., 2010)).
Let G be a DAG over V, and X,Y,Z ⊆ V be pairwise dis-
joint subsets of variables. The set Z satisfies the adjustment
criterion relative to (X,Y) in G if:

(i) No element in Z is a descendant in G of anyW ∈ V\X
lying on a proper causal path from X to Y and

(ii) All proper non-causal paths in G from X to Y are
blocked by Z.

Lemma 5 (Adjustment (Shpitser et al., 2010)). The set of
variables Z and X,Y in a causal diagram G satisfy the
adjustment criterion if and only if for every model inducing
G, we have Px(y) =

∑
z P (y | x, z)P (z).

Now we are ready to prove the following

Theorem 3. Given a selection diagram D and disjoint sets
of variables X, Y, Z, the causal effect P ∗x (y) is given by

P ∗x (y) =
∑

z
Px(y | z, S=1)P ∗(z) (18)

if and only if Z satisfies the st-adjustment criterion relative
to (X,Y).

Proof. (if) Since Z satisfies condition (i), by Thm. 2 we
have,

P ∗x (y) =
∑
z

P ∗x (y | z)P ∗ (z), (45)

and by condition (ii) we have that P ∗x (y | z) =
Px (y | z, S=1) therefore:

P ∗x (y) =
∑
z

Px (y | z, S=1)P ∗ (z). (46)

(only if) To show the necessity of the criterion we will
prove that whenever its conditions fail, there exists two
models inducing D (i.e., 〈M,M∗〉) that generate distri-
butions distributions Px(y, z | S=1) and P ∗(z) where
P ∗x (y) 6=

∑
z Px (y | z)P ∗ (z).

If condition (i) is not satisfied, consider any two models
M,M ′ for which P ∗x (y | z) = Px (y | z, S=1), then by
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the e-adjustment criterion we have that the causal distribu-
tion is different that the g-adjustment.

Now, suppose condition (i) holds while condition (ii) does
not. This is the case when there exists a path p from some
T -node or S-node to Y ′ ∈ Y that is active given Z in DX.

First assume it is a T -node. Then, we will show that there
exists a pair of models compatible with D′, a graph where
all edges but those in p have been removed, that is also
compatible with D.

Note that p does not contain any variable in X otherwise it
would be blocked inDX given X. Without loss of generality
assume that Y ′ is the only element in Y also in p, else select
the other element in Y closer to T as Y ′. Consequently, we
have that

P ∗x (y) = P ∗(y) = P ∗(y \ {y′})P ∗(y′) (47)

Consider the possible structures of p:

(a) Suppose that the path between T and Y ′ is directed:
Assume that S is pointing to a node W at the begin-
ning of the path (if T points directly to Y ′ we can
use the same argument and sum-out W from the ob-
tained distributions while substituting W with fW in
the equations). From eq. (47) we can sum over W and
obtain

P ∗x (y) = P ∗(y \ {y′})
∑
w

P ∗(y′ | w)P ∗(w) (48)

= P (y \ {y′})
∑
w

P (y′ | w)P ∗(w), (49)

while the adjustment functional is equal to∑
z

P (y | z)P ∗(z) (50)

=
∑
z

P (y)P ∗(z) (51)

= P (y) (52)
= P ∗(y \ {y′})P ∗(y′) (53)

= P ∗(y \ {y′})
∑
w

P (y′ | w)P (w). (54)

We can parametrize two models with all variables
binary, such that W is not independent of Y , and
all conditional distributions are the same except for
P ∗(w) 6= P (w). In this case the mapping between W
and Y is one-to-one, hence the adjustment is different
to the causal effect of interest.

(b) If the path p is not directed, suppose, as before, that T
points to a variable W , which also has a parent R with
binary domain, and let M∗ be a model such that

P ∗R=1(y
′) 6=

∑
z

P ∗(y′ | z, R = 1)P ∗(z), (55)

which must exists by the completeness of the adjust-
ment criterion (lemma 5) since Z does not satisfy
it relative to (R, Y ′). Now let M be a model such
that fW (uw) = f∗W (uw, R = 1). It is easy to see
that P ∗R=1(y

′) = P ∗(y′) = P ∗(y′ | x) and that
P ∗(y′ | z, R = 1) = P (y′ | z) = P (y′ | z,x),
hence equation (55) becomes

P ∗x (y
′) 6=

∑
z

P (y′ | z,x)P ∗(z), (56)

implying that M∗,M serve as counterexamples for
this case.

Second, if the condition is violated because of an S-node,
consider two identical submodels compatible compatible
with D′, a diagram where all edges but those witnessing the
violation to the condition have been disconnected. Note that
in D′ no edges incoming to X remain and the transportabil-
ity nodes are disconnected, therefore we have

Px(y | z, S=1) = P ∗(y | x, z, S=1), (57)

because (Y ⊥⊥ X | Z, S=1)D′X . Then, the adjustment
functional becomes∑

z

Px(y|z, S=1)P ∗(z) =
∑
z

P ∗(y|x, z, S=1)P ∗(z).

(58)

Since (Y⊥6⊥S | X,Z)D′ , Lemma. 4 implies that (58) is not
equal to P ∗x (y) for some model compatible with D′, which
serves as a counter example to our case.

A.3. Proof for Lemma 1

First we state the following lemma:

Lemma 6. Let Z satisfy e-adjustment. Then, for any order
satisfying the condition, no element in Zp satisfies indepen-
dence (15) in that order.

Proof. By definition (Zp⊥6⊥Y | Znd,X)GX , so any element
Z ′ ∈ Zp does not satisfy (15) unless there exists some
W ∈ Zd \ Zp for every path from Z ′ to Y that was active
given Znd. But, any such W is also not independent of Y
given Znd (to be able to block a path to Y) so it must be in
Zp, a contradiction. The conclusion follows.

Lemma 1. When X is a singleton, Definition. 6 is equiva-
lent to Definition. 4.

Proof. The second condition in each criterion is the same,
hence we need to show that the first condition in one is
equivalent to the other when |X| = 1.

Suppose (i) holds in def.4. Then, an order with Znd <
Zd \ Zp < Zp satisfies e-adjustment (by definition of Zd
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and (Zp⊥⊥X | Z\Zp)). Accordingly, condition (i) in def.6
is satisfied too.

For the other direction, suppose (i) in def. 6 is satisfied,
hence there exists an order over Z that satisfies e-adjustment.
The first element Z1 in the order cannot be in Zp be-
cause then has to satisfy (Z1 ⊥⊥X), which is not possible
since Z1 ∈ De(X). Also, for any Zi, i > 1, the graph
D

X(Z≤i−1)
= D. Let Zi and Zi+1 two contiguous variables

in the order such that i > 1 and Zi ∈ Zp and Zi+1 /∈ Zp.
Then we have (Zi⊥⊥X | Z≤i−1) and (Zi+1⊥⊥Y | Z≤i)DX

.
We want to claim that

• (Zi ⊥⊥X | Z≤i−1 ∪ {Zi+1}) holds: If this is not the
case Zi+1 has to be a descendant of a collider in a
path from Zi to X . However, by lemma 6, Zi must be
d-connected to Y given Z≤i−1 in which case Zi+1 is
also d-connected to Y and is in Zp (a contradiction)
unless Zi is a collider in the this path between Zi+1

and Y, but then Zi+1 is d-connected to Y given Z≤i

in DX, contradicting our assumption.
• (Zi+1 ⊥⊥ Y | Z≤i−1)DX

holds: Suppose this is not
the case, then Zi+1 is not a descendant of a collider
in a path from Zi+1 to Y, in which case any node in
the portion of the path from Zi to Zi+1 (including the
latter) are by definition in Zp, a contradiction.

From these new independences, we conclude that Zi and
Zi+1 can be swapped while maintaining the invariance of
property of the order. Repeating this process yields an
order where Znd < Zd \ Zp < Zp which implies that
(Zp ⊥⊥X | Z \ Zp).

A.4. Proof for Theorem 4

Theorem 4. In the absence of selection bias (i.e., S node
disconnected from any other variable), if a set Z satisfies
st-adjustment and Z∩De(X) 6= ∅, then there exists Z′ ⊆ Z
such that Z′ ∩De(X) = ∅ and Z′ satisfies st-adjustment.

Proof. (by contradiction) We will show that given Z if no
Z′ ⊆ Z \ De(X) exists satisfying the conditions, then Z
violates at least one of them. By proposition 1, any Z′

always satisfies condition (i). It must be the case, that Z′

could only be violating condition (ii). Accordingly, there
exists a path p between some S ∈ S to Y ∈ Y that is
blocked given Z but active given Z′ in DX which implies
there exists Z ∈ Z \ Z′ that blocks p, and that p does not
intersect X. If Z /∈ De(X) we could just add Z to Z′ and
restart the argument from there, so we will further assume
that Z ∈ De(X). S has only outgoing edges, so p is either
directed or contains one or more colliders. In the former
case, Z has to be an ancestor of Y to be able to block p. In
the latter, Z has to be an ancestor of a collider or of Y , but if

it is the ancestor of a collider, that collider is also in De(X),
hence not in Z′ contradicting the assumption that p is active
given Z′. In consequence, Z is an ancestor of Y . Under
this assumptions, and by lemma 7, Z may not contain any
such Z else it does not satisfy e-adjustment and we have a
contradiction.

A.5. Proof for Lemma 2

Lemma 2. A set Z satisfies e-adjustment if and only if
there exists Zi ∈ Z such that Zi satisfies (15) or (16), and
Z \ {Zi} satisfies e-adjustment.

Proof. (if) Suppose Z satisfies e-adjustment, then there ex-
ists an order such that each element satisfies (15) or (16).
Let Zi be the last element in that order and notice that
Z \ {Z1} is also E-Admissible by the same order minus Zi.

(only if) If Z satisfies e-adjustment and some Zi satisfies
(15) or (16) with Z≤i−1 = Z, then the order over Z with
Zi appended at the end witnesses that Z ∪ {Zi} satisfies
e-adjustment.

A.6. Proof for Lemma 3

Lemma 3. If Z satisfies e-adjustment, then for any Zi ∈
Z satisfying (15) or (16), the set Z\{Zi} satisfies e-
adjustment.

Proof. Define the predicates:

E(Z) : Z satisfies e-adjustment,
A(Zi,Z) : Zi satisfies (15) with Z≤i−1 = Z \ {Z1}, and
B(Zi,Z) : Zi satisfies (16) with Z≤i−1 = Z \ {Z1}.

Then from lemma 2 we have that

E(Z) =⇒ (59)
∃Zi∈Z (A(Zi,Z) or B(Zi,Z)) and E(Z). (60)

Equivalently,

¬(∀Zi∈Z (¬A(Zi,Z) and ¬B(Zi,Z)) or ¬E(Z \ {Zi})).
(61)

In particular, for anyZi satisfying (15) or (16) this is implies

E(Z) =⇒ ¬(false and ¬E(Z \ {Zi})) (62)
E(Z) =⇒ E(Z \ {Zi}) (63)

A.7. Proof for Theorem 5

Theorem 5. Z satisfies e-adjustment (Def. 5) w.r.t. (X,Y)
in G if and only if IsEAdmissible (Alg. 1) returns true.
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Proof. (if) the procedure will return true only if it was able
to remove all elements Z ∩ De(X) one by one while they
satisfied either independence (15) or (16), witnessing that
there exists an order satisfying the condition.

(only if) Suppose for the sake of contradiction that the al-
gorithm returned false but Z satisfies e-adjustment. The
procedure returns false when there is Z′ ⊆ Z such that
no element in Z′ satisfies (15) or (16) and all elements in
Z \ Z′ removed in some order Z ′` < . . . < Z ′1 did (Z` was
the last removed before obtaining Z′). By Lemma. 3 we
have that Z′ ∪ {Z`} does not satisfy the criteria, and by
repeatedly applying the same theorem we conclude that Z
is not admissible, a contradiction.

B. Appendix: Proofs in Section 5
B.1. Proof for Lemma 10

First, we will need some results.

Lemma 7. If Z includes someW /∈ X, that is a descendant
of X and also an ancestor of Y in GX, or a descendant of
such W in G, then Z does not satisfy g-adjustment.

Proof. Let W be a variables as described in the statement.
This variables does not satisfy (15) because of the directed
path p from some X ′ ∈ X to W . It also does not satisfy
(16) due to the directed path q from W to some Y ′ ∈ Y.
Therefore, a viable set Z including W must also include at
least another variable W ′ that goes before W in the order
and blocks p or q. However, W ′ has the same character-
istics as W and requires some W ′′ to be also in the order.
Following this argument, we must reach a W that is directly
connected to X ′ or Y ′ and conclude that the order required
by def. 5 cannot not exists.

Lemma 8. Let Z be such that Zp = ∅. Then, Z satisfies
e-adjustment criterion.

Proof. Since Zd = Z ∩De(X) contains no element from
Zp, it follows (Zd ⊥⊥ Y | Z \ Zd,X)GX which implies
(by decomposition graphoid) that for any order over Zd we
have (Zi⊥⊥Y | Zi,X)GX . We conclude that an order where
Znd < Zd satisfies def. 5.

Lemma 9. Let I and Z be two set satisfying e-adjustment
relative to X,Y such that I ⊂ Z. Then, there exists Zi ∈
Z \ I such that I ∪ {Zi} satisfies e-adjustment.

Proof. Assume for the sake of contradiction that for every
Zi ∈ Z \ I, I ∪ {Zi} has no valid order. Then, for every Zi

there exists Zj ∈ (Z \ I) \ {Zi} that comes after Zi in the
order, and Zk ∈ I that satisfied the conditions in the order

over I, failed when Zi is added and satisfy it again when Zj

is also added. That is (Zk ⊥⊥Y | Z<k,X)GX , (Zk ⊥6⊥Y |
Z<k, Zi,X)GX and (Zk ⊥⊥ Y | Z<k, Zi, Zk,X)GX . Or
(Zk ⊥⊥X | Z<k)G

X(Z<k)
, (Zk ⊥6⊥X | Z<k, Zi)G

X(Z<k,Zi)

and (Zk ⊥⊥X | Z<k, Zi)G
X(Z<k,Zi,Zk)

. These constraints
cannot be satisfied for every Zi simultaneously.

Lemma 10. ListGAdjIR outputs all sets Z, I ⊆ Z ⊆ R,
that satisfy g-adjustment, with O(n(n+m)) delay. , I = ∅
and R = W \De

(
(De(X)DX

\X) ∩An(Y)DX

)
Proof. (Correctness) The algorithm outputs I (line 6), if I
d-separates T, S and Y in DX (condition in line 4); hence
I satisfies condition (ii) in def. 6. Because of the order
in which variables for A are picked, variables in Zp are
added last to I. While I ∩ Zp = ∅, proposition 1 and
lemma 8 guarantee that I satisfies e-adjustment. If I contains
an element in Zp it must have been picked at line 8 and
IsEAdmissible returned true for I; hence I always satisfies
condition (i). We conclude that every time the algorithm
outputs a set, it satisfies g-adjustment criterion.

(Completeness) Note that at each recursion the search
branches into to disjoint families of sets. Those sets that
contain A (line 10) and those that do not (line 11).

Consider any set Z satisfying definition 6, there should a
branch in this recursion such that Z = I = R (when Z is
outputted), unless (1) the condition in line 4 failed while
I ⊆ Z ⊆ R or (2) line 13) was executed while I ⊆ Z ⊆ R
and A was empty.

In case (1), failing the condition implies (by lemma 11) that
there exists no set Z such that I ⊆ Z ⊆ R that d-separates
T, S from Y in DX, which contradicts the assumption that
Z satisfies the conditions (in particular condition (ii).

In case (2), since A was empty, it means that R \ I only
contains variables in Zd such that (R \ I⊥6⊥Y | I)DX

, (that
is variables in Zp) and there is no A ∈ R \ I such that
I ∪ {A} satisfies e-adjustment criterion. By lemma 9 no
such Z, I ⊂ Z ⊆ R may exists, hence the only possibility
left to explore is for I itself to be a valid set which is verified
by the recursive call in line 13.

(Complexity) The recursion induced by the algorithm can
be seen as a tree where each leaf produces an output. This is
due to the fact that every time there is no valid set restricted
to I and R, the algorithm aborts that branch at line 4 if it is
due to condition (i), and at line 13 if due to condition (ii).
In the first case, it takes O(n+m) time to perform this test.

In the second case, A has to be empty, meaning that no
variable in R \ I satisfied any of the conditions in line 8.
From those, the first and second one can be tested in O(n+
m) time, while the third (that uses IsEAdmissible) may take
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Algorithm 3 ExistsSep(G,X,Y, I,R)

Input: causal diagram G, disjoint subsets X,Y,R ⊆ V
and set I ⊂ R.

Output: true if there exists Z such that I ⊆ Z ⊆ R and
(X⊥⊥Y | Z) in G.

1: let Z′ = An(X ∪Y ∪ I) ∩R
2: return (X⊥⊥Y | Z′)G

O(n2(n+m)). In the worst case each element in R \ I has
to be tested leading to timeO(n3(n+m)) for any particular
call in the recursion.

The length of any branch (from the start to reaching a leaf) is
at most n, because at every level R\I reduces in one variable
and the process end when the difference is 0. It follows that
the time spent on each output is O(n4(n+m)).

B.2. Proof for Theorem 6

Theorem 6. ListGAdjSets on input D,X,Y,W, lists all
sets Z ⊆W satisfying st-adjustment relative to X,Y in D,
with O(n4(n+m)) delay.

Proof. First, the algorithm identifies the set F that by
lemma 7 can be discarded. Then, restrict the search to
subsets of R which is equal to the available set W minus
X,Y and F. Then, by calling ListGAdjIR, it lists all sets Z
satisfying g-adjustment such that Z ⊆ R.

The complexity here is given by ListGAdjIR.

The algorithm ExistsSep used in ListGAdjIR is shown in
algorithm 3 and it is correct due to the following

Lemma 11 ((van der Zander et al., 2014)). Let X,Y, I,R
be sets of nodes with I ⊆ R, R ∩ (X ∪Y) = ∅. If there
exists an separator Z0 for X,Y, with I ⊆ Z0 ⊆ R then
Z = An(X ∪Y ∪ I) ∩R is a separator for X,Y.

C. Appendix: Other Results Used
We use the following rules to reason about causal distribu-
tions throughout the paper:

Theorem 7 (Do-Calculus (Pearl, 1995)). Let G be a causal
diagram compatible with a structural causal model M , and
let P (v) be a probability distribution induced by M over
the endogenous variables V. For any disjoint subsets of
endogenous variables X,Y,Z, and W, the following rules
are valid for every interventional distribution compatible
with G.

Rule 1 (Insertion/Deletion of observations):

P (y | do(x), z,w) = P (y | do(x),w) (64)
if (Y ⊥⊥ Z | X,W)GX . (65)

Rule 2 (Action/Observation exchange):

P (y | do(x), do(z),w) = P (y | do(x), z,w) (66)
if (Y ⊥⊥ Z | X,W)GXZ

. (67)

Rule 3 (Insertion/Deletion of actions):

P (y | do(x), do(z),w) = P (y | do(x),w) (68)
if (Y ⊥⊥ Z | X,W)G

XZ(W)
, (69)

where Z(W) is the set of Z-nodes that are not ancestors of
any W-node in GX.


