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Appendix 1 (background)
The basic semantical framework in our analysis rests on
structural causal models (Pearl 2000, Ch. 7). In this frame-
work, each child-parent relationship is a structural function,
and a collection of these functions induces observational and
interventional distributions. We make use of a criterion for
reading constraints imposed over these distributions in the
induced graph known as d-separation, as defined next.
Definition (d-separation (Pearl 1988)). A set Z of nodes is
said to block a path p in a causal graph G if either

1. p contains at least one arrow-emitting node in Z, or
2. p contains at least one collision node that is outside Z

and has no descendant in Z.
If Z blocks all paths from set X to set Y , it is said to “d-
separateX and Y,” and then, it can be shown that variables
X and Y are independent given Z, written (X ⊥⊥ Y |Z).

We also make use of the do-calculus, which is a collec-
tion of syntactic rules that permit the manipulation of causal
expressions involving the do-operator (Pearl 1995). Let X ,
Y , and Z be arbitrary disjoint sets of nodes in a causal graph
G. An expression of the type Q = P (y|do(x), z) is said to
be compatible with G if the interventional distribution de-
scribed by Q can be generated by parameterizing the graph
with a set of functions and exogenous variables.

The following rules are valid for every interventional dis-
tribution compatible with G (Pearl 2000, pp. 85–86):
Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w)
if (Y ⊥⊥ Z|X,W )GX

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w)
if (Y ⊥⊥ Z|X,W )GXZ

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w)
if (Y ⊥⊥ Z|X,W )G

X Z(W )
,

where Z(W ) is the set of Z-nodes that are not ancestors of
any W -node in GX.
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Appendix 2 (proofs)
Theorem 1. The distribution P (y|x) is s-recoverable from
Gs if and only if (S ⊥⊥ Y |X).

Proof. (if) It is obvious that if X d-separates S from Y in
Gs, P (y|x) is s-recoverable.

(only if) We show that whenever there exists an open path
between S and Y that is not blocked by X , two distribu-
tions P1, P2 compatible with the causal model can be con-
structed such that they agree in the probability distribution
under selection bias, P1(V | S = 1) = P2(V | S = 1),
and disagree in the target distribution Q = P (Y | X), i.e.,
P1(Y | X) 6= P2(Y | X).

Let P1 be compatible with the graph G1 = Gs, and P2

with the subgraph G2 where the edges pointing to S are re-
moved (see (Tian 2002, Lemma 8)). Notice that P2 harbors
an additional independence relative (V ⊥⊥ S)P2 , where V
represents all variables in Gs but the selection mechanism
S. We will set the parameters of P1 through its factors and
then compute the parameters of P2 by enforcing P2(V | S =
1) = P1(V | S = 1). Since P2(V |S = 1) = P2(V ), we
will have P1(V |S = 1) = P2(V ).

Given a Markovian data-generating model (Pearl 2000),
P1 can be parametrized through its factors in the Markovian
decomposition P1(S = 1 | Pas), P1(X | Pax), . . ., more
generally, P1(Vi | PAi) for each family in the graph. Recov-
erability should hold for any parametrization, so we assume
that all variables are binary. In turn, we examine the possible
ways of how S is connected to Y while conditioned on X .

Case 1. Firstly, let us consider the case in which Y ∈
PaS , which implies that S is not separable from Y in Gs.
We follow the construction given in Lemma 1. Let U be the
set of nodes that connect X to Y . The distribution of Y is
a function of the values of X if we sum out all variables in
U , P1(Y |X) =

∑
U

∏
X,U,Y P1(Vi|Pai)), so without loss

of generality we can parametrize this distribution directly.
Now, we can write the conditional distribution in the second
causal model as follows:

P2(Y |X) = P1(Y |X,S = 1) =
P1(Y,X, S = 1)
P1(X,S = 1)

(1)

=
P1(S = 1|Y )P1(Y |X)

P1(S = 1|Y )P1(Y |X) + P1(S = 1|Y )P1(Y |X)
, (2)



where the first equality is enforced by construction, the sec-
ond and third follow from the axioms of probability.

Consider the subgraph G′ such that all V \ {X,Y, U, S}
are disconnected from {X,Y, U, S}, where we can
parametrize the complete model as in (Tian 2002, Lemma
8). Now we compare P2(Y |X) with P1(Y |X). The equal-
ity constraint imposed over these quantities can be seen as a
line in the parameter space of higher dimension, which has
measure zero. This implies that for almost all parametriza-
tions, P1(Y |X) and eq. (2) will not be the same. For in-
stance, we can set the distribution of every family in G′

but the selection node equal to 1/2, and set the distribution
P1(S = 1|Y ) = α, P1(S = 1|Y ) = β, for 0 < α, β < 1
and α 6= β. The result follows since the other parame-
ters of P2 are free and can be chosen to match P1, and
P2(Y |X) = α/(α+ β) and P1(Y |X) = 1/2.

Case 2. Let us consider the case in which there exists an
open directed path from Y to S, which means that it does
not pass through X (i.e., only the values of X will end
up being used in the construction). Let Z be the immedi-
ate child of Y in this path and assume the distance from
Z to S is arbitrary. Let W be the set of nodes that con-
nect Z to S and U be the set of nodes that connect X to
Y . Consider the induced subgraph G′ such that all nodes
in Gs but V \ {X,U, Y, Z,W, S} are disconnected from
{X,U, Y, Z,W, S}.

Following eq. (1), P2(Y |X) = P1(Y,X,S=1)
P1(X,S=1) , we can

rewrite the numerator of the r.h.s. in expanded form as

P1(Y,X, S = 1) =
∑

U,Z,W

P1(X,U, Y,W,Z, S = 1)

=
∑

U,Z,W

P1(X|Pax) ... P1(S = 1 | Pas)

=
∑

U,Z,W

∏
V ∪S

P1(Vi | Pai)

=
∑
U

∏
U

P1(Vi | Pai)
∑
Z,W

∏
V ∪S\U

P1(Vi | Pai) (3)

Given a topological order compatible with G′, the families
in U are functions of X but not of Z,W, Y, S, and since
the same value of X is instantiated in the numerator and
the denominator in eq. (1), these factors cancel out. So, we
consider only the second sum in eq. (3). Now, we can rewrite∑
Z,W

∏
V ∪S\U

P1(Vi | Pai)

=
∑
Z

∏
V \U∪W

P1(Vi | Pai)
∑
W

∏
W∪S

P1(Vi | Pai) (4)

The sum over the factors relative to W in eq. (4) is a
function of Z (since Z ∈ An(S)), so define f(Z) =∑

W

∏
S∪W P1(Vi|Pai). The distribution of Y is a func-

tion of the value of X since we sum out all values of
U , let us call it P (Y |X̃). Define αz(Y ) = P (Z|Y ),
and since Y is not affected by Z, we can rewrite eq. (4)
as P (Y |X̃)

∑
Z αz(Y )f(Z). Given these observations, we

rewrite P2(Y |X) (eq. (1)) as follows

P1(Y |X̃)
∑

Z αz(Y )f(Z)(
P1(Y |X̃)

∑
Z αz(Y )f(Z)

)
+
(
P1(Y |X̃)

∑
Z αz(Y )f(Z)

) ,
which we want to compare with P1(Y |X̃).

By construction of G′, f(Z) and αz(Y ) as a convolu-
tion, it is the case that the expressions for Q1 and Q2 can-
not be simplified in the general case. We explore the fact
that the equality constraint between these two quantities (for
all values of X and Y ) imposes weak constraints in the
high dimensional parameter space and valid parametriza-
tions have Lebesgue mass zero; i.e., for almost all param-
eters that we chose the equality between Q1 and Q2 will not
hold, we chose explicitly one of such parameters. So, first
make P1(Y |X̃) = 1/2 for all values of Y, X̃ , which implies

P2(Y |X̃) =
∑

Z αz(Y )f(Z)(∑
Z αz(Y )f(Z)

)
+
(∑

Z αz(Y )f(Z)
) (5)

We can compose the linear transformations encoded in
f(Z), which is from the parameter space of W ∪ S to Z,
that is, [0, 1]2

|W |+1 → [0, 1]|Z|. Consider a topological order
W1 < W2 < ... < W|W | < S relative to W ∪ S. We rear-
range the product

∑
W

∏
S∪W P1(Vi|Pai) as 2×2 matrices

relative to each factor P (Wi|Wi+1) (each row sums to 1 sat-
isfying the integrality constraint) and P (S = 1|W|W |) is a
column-vector 2× 1 for each value of W|W |.

Let the matrix of the first distribution relative to W1 be
M = [p, 1− p; 1− q, q], for some 0 < p, q < 1, which will
be instantiated below. We can decompose M in its canoni-
cal form, i.e., in terms of its eigenvectors, [1,−(p− 1)/(q−
1)], [1, 1], and eigenvalues [1, p+q−1]. The product in f(Z)
is a composition of linear transformations, which is also a
linear transformation. We make each distribution to follow
the same form given by M , so this composition is equiva-
lent to the product of the matrix with the eigenvectors times
the power to k = |W | of the matrix with the eigenvalues in
the diagonal times the inverse of the matrix with the eigen-
vectors, let us call it Mc. After some trivial (but tedious)
algebra, we obtain:

Mc(1, 1) = 1−
(1− p)

(
(p+ q − 1)k − 1

)
p+ q − 2

Mc(1, 2) =
(1− p)

(
(p+ q − 1)k − 1

)
p+ q − 2

Mc(2, 1) =
(1− q)

(
(p+ q − 1)k − 1

)
p+ q − 2

Mc(2, 2) = 1−
(1− q)

(
(p+ q − 1)k − 1

)
p+ q − 2

(6)

Set (p = 3/5, 1 − q = 2/5), it is not difficult to check
that this assignment yields a valid parametrization for the
distribution, we have

Mc(1, 1) = Mc(2, 2) = 1− 1
2
(1−

(1
5
)k)

Mc(1, 2) = Mc(2, 1) =
1
2
(1−

(1
5
)k)

(7)



Now, let (P (S = 1|W|W |) = 2/3, P (S = 1|W|W |) =
1/2), and we can see that f(Z) = 7/12 + ε, f(Z) =
7/12 − ε, where ε = (1/5)k. We can chose αz(y) =
1/3, αz(y) = 3/4. Finally, we can evaluate eq. (5) and note
that Q2 = 1/2− (2/7)ε, which is never equal to 1/2 (= Q1)
given that the graph is finite.

Case 3. Let us consider the case in which the path from Y
to S pass through an ancestor of Y . Let us callA = An(Y )\
{Y }. Since A \X is not d-separated from Y given X in Gs,
there is a path p from Z ∈ A \X to Y that is not blocked by
X . Without loss of generality, let us consider the closestZ in
this path. There are two possible cases to consider: p might
be a directed path from Z to Y that does not contain X as
an intermediate (e.g., Z → . . . → Y ); or, p might contain
converging arrows into X (Z → . . .→ X ← . . .→ Y ).

Subcase 3a. We start with when p is a directed path. Let
U be the set of nodes that connect X to Y , W the nodes that
connect Z to Y (given X), and R the nodes that connect
Z to S. Consider the induced subgraph G′ of Gs such that
all nodes except {X,U,Z,W,R, Y } are removed from Gs

(i.e., V \{X,U,Z,W,R, Y } can be parametrized as random
coins, see (Tian 2002, Lemma 8)). Since Z ∈ An(S), let
us call p′ the path connecting Z to An(S) \ An(Y ) in Gs

(i.e., Z → . . . → S). Add p′ with all its nodes to G′. Note
that Z is such that it blocks the concatenation of p and p′.
Note that this concatenation is such that it has two emanating
arrows from Z (i.e., p ← Z → p′). Now, we can transform
Gs while staying in the same equivalence class . In order to
do so, reverse the direction of all arrows in p such that Z
is no longer in An(Y ). Now, the same parametrization as
discussed in case 2 is valid for this case.

Subcase 3b. Consider the case in which p contain con-
verging arrows intoX . Let us consider the variablesX,Y, Z,
and let L be the common ancestor that, together with Z, has
converging arrows intoX in p. The construction here will be
similar to the previous case except for two main differences.

First, the path p can be seen as the concatenation of four
segments p1, ..., p4 such that p1 is the segment L → . . . →
Y , p2 is the segment L → . . . → X , p3 is the segment
Z → . . .→ X , and p4 the segmentZ → . . .→ S. Note that
by construction, there might exist only chains along each of
these segments, so to avoid algebraic clutter we assume that
those are segments of length one, but it is trivial to stretch
those segments following the same structure given in case 2
for f(Z). When we have multiple X’s in p, we will have the
concatenation of several segments p3 and p4, and it will also
be simple to extend the construction given for f(Z) for this
case. Remarkably, these segments capture precisely the for-
bidden subgraph that precludes s-recoverability when p has
converging arrows to X . Second, no directed path between
X and Y is used in the construction of the counterexample
and the induced subgraphG′ without these paths can also be
generated by the original model (Tian 2002, Lemma 8).

We follow similar structure as in case 2. Following eq. (1),
P2(Y |X) = P1(Y,X,S=1

P1(X,S=1) , we can rewrite the numerator as∑
L

P1(Y |L)P1(L)
∑
Z

P1(X|Z,L)P1(Z)P1(S = 1|Z)(8)

Define αL(Y ) = P1(Y |L)P1(L) and note that the second
sum is not affected by Y but it is a function of L, so define
f(L) =

∑
Z P1(X|Z,L)P1(Z)P1(S = 1|Z), and write

P2(Y |X) =
∑

L αL(Y )f(L)(∑
L αL(Y )f(L)

)
+
(∑

L αL(Y )f(L)
) (9)

Define another function of L that sums out S, g(L) =∑
Z P1(X|Z,L)P1(Z), and note that P1(Y |X) is the same

as eq. (9) with the function f replaced with g. This expres-
sion cannot be simplified in general since there is a depen-
dence across the two functions. To see that, consider the fol-
lowing parametrization: αL(Y ) = αL(Y ) = 1/3, αL(Y ) =
1/9, αL(Y ) = 2/9, P (Z) = 1/2; P1(X|Z,L) = 1/2 +
ε, P1(X|Z,L) = 1/2 − ε, P1(X|Z,L) = P1(X|Z,L) =
1/2, for 0 < ε < 1/2. Call P (S = 1|Z) = α, P (S =
1|Z) = β, and pick any α, β such that α > β. After some
trivial (but tedious) algebra, we have P1(Y |X) = 2/3 and

P2(Y |X) =
2
3

(
α+ β + ε(α− β)
α+ β + 8

9ε(α− β)

)
, (10)

which are always different. QED.

Remark. We considered Markovian models in Theorem 1,
but the extension for Semi-Markovians is straightforward.
This is so because the latent variables impose no constraints
over the distribution of the observables, which means that
there are even more degrees of freedom that can be used to
produce a parametrization following the lack of separability.

Theorem 2. If there is a set C that is measured in the biased
study with {X, Y } and in the population level with X such
that (Y ⊥⊥ S|{C,X}), then P (y|x) is recoverable as

P (y|x) =
∑

c

P (y|x, c, S = 1)P (c|x). (11)

Proof. We can condition P (y|x) on the set C and write

P (y|x) =
∑

c

P (y|x, c)P (c|x) (12)

=
∑

c

P (y|x, c, S = 1)P (c|x), (13)

where the last line follows since C is such that (Y ⊥⊥
S|{C,X}). QED.

Lemma 2. If Y ⊥⊥ S|(C,X), then Y ⊥⊥ S|(C ′, X), where
C ′ = C ∩An(Y ∪ S ∪X) (Acid and de Campos 1996).

Lemma 3. Given three sets of nodes X , Y , and Z, and
a set C ⊆ An(X ∪ Y ∪ Z), X ⊥⊥ Y |(Z ∪ C) if and
only if Z ∪ C separates X from Y in undirected graph
(GAn(X∪Y ∪Z))m, the moral graph of GAn(X∪Y ∪Z) (Acid
and de Campos 1996).

Theorem 3. There exists some set C ⊆ T ∩M such that
Y ⊥⊥ S|{C,X} if and only if the set (C ′∪X) d-separates S
from Y whereC ′ = [(T∩M)∩An(Y ∪S∪X)]\(Y ∪S∪X).



Proof. The “if” part is trivial as it gives a set that d-separates
S from Y .

(only if) If there exists a set C ⊆ T ∩M (that is disjoint
from Y, S,X) such that Y ⊥⊥ S|(C,X) then the set C ′′ =
C ∩ An(Y ∪ S ∪ X) satisfies Y ⊥⊥ S|(C ′′, X) based on
Lemma 2. From Lemma 3 we have that C ′′ ∪ X separates
S from Y in the undirected graph (GAn(Y ∪S∪X))m. In an
undirected graph, if (C ′′ ∪ X) ⊆ (C ′ ∪ X), is a separator,
then C ′ ∪X must be a separator. Using Lemma 3 again, we
obtain that (C ′ ∪X) d-separates S from Y in G. QED.

Lemma 4. Let C1 be a minimal set satisfying Y ⊥⊥
S|(C1, X), Co

1 be any subset of C1 (including empty set),
and Cm

1 = C1 \Co
1 . If C2 is a minimal set satisfying Cm

1 ⊥⊥
S|(Co

1 , X,C2), then we must have Y ⊥⊥ S|(C2, C1, X) and
Y ⊥⊥ S|(C2, C

o
1 , X).

Proof. Since C1 is minimal, by Lemma 2 we obtain C1 ⊆
An(Y ∪S ∪X). Similarly we have C2 ⊆ An(S ∪X ∪C1),
and thereforeC2 ⊆ An(Y ∪S∪X). Since Y ⊥⊥ S|(C1, X),
by Lemma 3 we have that C1∪X separates S from Y in the
undirected graph (GAn(Y ∪S∪X))m. SinceC2 ⊆ An(Y ∪S∪
X) we have thatC1∪X∪C2 separates S from Y in the undi-
rected graph (GAn(Y ∪S∪X))m. Then by Lemma 3 we obtain
Y ⊥⊥ S|(C2, C1, X). Given Y ⊥⊥ S|(C2, C

m
1 , C

o
1 , X), and

Cm
1 ⊥⊥ S|(Co

1 , X,C2), we obtain Y ⊥⊥ S|(C2, C
o
1 , X) by

the contraction axiom.

Lemma 5. For sets W,X , let C1 be a nonempty minimal
set satisfying W ⊥⊥ S|(C1, X). Let Co

1 be any subset of C1,
and Cm

1 = C1 \ Co
1 . We have

P (w|x) =
∑
c1

P (w|x, c1, S = 1)P (c1|x). (14)

Then
1. C1 ⊥⊥ S|X does not hold.
2. Let C2 ⊆ M be a minimal set satisfying C1 ⊥⊥
S|(X,C2). Then W ⊥⊥ S|(C2, X). Therefore,

P (c1|x) =
∑
c2

P (c1|x, c2, S = 1)P (c2|x). (15)

P (w|x) =
∑
c2

P (w|x, c2, S = 1)P (c2|x). (16)

That is, if P (c1|x) is recovered via Theorem 2, then
P (w|x) must be recovered via Theorem 2.

3. Cm
1 ⊥⊥ S|(Co

1 , X) does not hold.
4. Let C2 ⊆ M be a minimal set satisfying Cm

1 ⊥⊥
S|(Co

1 , X,C2). Then W ⊥⊥ S|(C2, C
o
1 , X). Therefore,

P (cm1 |co1, x) =
∑
c2

P (cm1 |co1, x, c2, S = 1)P (c2|co1, x).

(17)

P (w|x) =
∑
co
1,c2

P (w|co1, x, c2, S = 1)P (c2, co1|x).

(18)

That is, if P (cm1 |co1, x) is recovered via Theorem 2, then
P (w|x) must be recovered via Theorem 2.

Proof. 1. If C1 ⊥⊥ S|X , from W ⊥⊥ S|(C1, X) and the
contraction graphoid axiom, we obtain W ⊥⊥ S|X . This
contradicts with C1 being minimal.

2. Given C2 ⊆ M being a minimal set satisfying C1 ⊥⊥
S|(X,C2), we obtain W ⊥⊥ S|(C2, X) by Lemma 4.

3. IfCm
1 ⊥⊥ S|(Co

1 , X), fromW ⊥⊥ S|(Cm
1 , C

o
1 , X) and the

contraction graphoid axiom, we obtain S ⊥⊥W |(Co
1 , X).

This contradicts with C1 being minimal.
4. Given C2 ⊆ M being a minimal set satisfying Cm

1 ⊥
⊥ S|(Co

1 , X,C2), we obtain W ⊥⊥ S|(C2, C
o
1 , X) by

Lemma 4.

Definition 3. We say that P (w|z) is C-recoverable if and
only if it is recovered by the procedure RC(w, z).
Theorem 4. For X ⊆ T , Y /∈ T , Q = P (y|x) is C-
recoverable if and only if it is recoverable by Theorem 2, that
is, if and only if there exists a setC ⊆ T ∩M such that (Y ⊥
⊥ S|C,X}) (where C could be empty). If s-recoverable,
P (y|x) is given by P (y|x) =

∑
c P (y|x, c, S = 1)P (c|x).

Proof. (if) If there exists a set C ⊆ T ∩M such that Y ⊥⊥
S|(C,X), then it is clear RC(Y,X) will recover P (y|x).

(only if) Assume there exists no set C ⊆ T ∩ M such
that Y ⊥⊥ S|(C,X). If there exists no set C ⊆ M such that
Y ⊥⊥ S|(C,X), then RC(Y,X) will output FAIL. Assume
for every minimal set C1 ⊆ M satisfying Y ⊥⊥ S|(C1, X),
there exist some variables in C1 that are not in T . We need
to prove RC(Y,X) will not recover P (y|x).

The only way for RC(Y,X) to recover P (y|x) is by the
following

P (y|x) =
∑
c1

P (y|x, c1, S = 1)P (c1|x), (19)

such that R(C1, X) recovers P (c1|x) for some C1. By
Lemma 5, the only way for R(C1, X) to recover P (c1|x)
is that there exists some Co

1 ⊂ C1 (Co
1 could be empty set)

for which there exists a minimal set C2 ⊆ M satisfying
Cm

1 ⊥⊥ S|(Co
1 , X,C2) where Cm

1 = C1 \ Co
1 , such that ei-

ther C2 ∪ Co
1 ∪X ⊆ T rendering P (cm1 |co1, x) being recov-

ered via Theorem 2 or R(C2, C
o
1 ∪X) recovers P (c2|co1, x)

(and R(Co
1 , X) recovers P (co1|x)). But P (cm1 |co1, x) being

recovered via Theorem 2 would contradict with our assump-
tion since by Lemma 5 it means P (y|x) will be recovered
via Theorem 2.

These same arguments apply to R(C2, C
o
1 ∪ X).

By repeated application of Lemma 5, we have that if
RC(Y,X) succeeds in recovering P (y|x), then there ex-
ist a sequence of function calls R(C1, X), R(C2, C

o
1 ∪

X), . . . , R(Ck, C
o
k−1 ∪ . . . ∪ Co

1 ∪ X) that ends with
R(Ck, C

o
k−1 ∪ . . . ∪ Co

1 ∪ X) succeeding in computing
R(Ck|Co

k−1∪. . .∪Co
1∪X) by recoveringR(Cm

k |Co
k , C

o
k−1∪

. . .∪Co
1 ∪X) via Theorem 2. Then by reasoning backwards

using Lemma 5, we have that R(Cm
k−1|Co

k−1, C
o
k−2 ∪ . . . ∪

Co
1 ∪ X) must be recovered via Theorem 2, and so on, un-

til we obtain P (cm1 |co1, x) must be recovered via Theorem 2
and finally P (y|x) must be recovered via Theorem 2. This
would contradict with our assumption. ThereforeRC(Y,X)
will not recover P (y|x). QED.



Definition 4 (Selection-backdoor criterion). Let a set Z of
variables be partitioned into Z+ ∪ Z− such that Z+ con-
tains all non-descendants of X and Z− the descendants of
X . Z is said to satisfy the selection backdoor criterion (s-
backdoor, for short) relative to an ordered pairs of variables
(X,Y ) and an ordered pair of sets (M,T ) in a graph Gs if
Z+ and Z− satisfy the following conditions:

(i) Z+ blocks all back door paths from X to Y ;
(ii) X and Z+ block all paths between Z− and Y , namely,
(Z− ⊥⊥ Y |X,Z+);

(iii) X and Z block all paths between S and Y , namely,
(Y ⊥⊥ S|X,Z);

(iv) Z ∪ {X,Y } ⊆M , and Z ⊆ T .

Theorem 5 (Selection-backdoor adjustment). If a set Z sat-
isfies the s-backdoor criterion relative to the pairs (X,Y )
and (M,T ) (as in def. 2), then the causal effect of X on Y
is identifiable and recoverable and is given by the formula

P (y|do(x)) =
∑
z+

P (y|x, z, S = 1)P (z) (20)

Proof. We first condition the effect of X on Y on Z+ and
write

P (y|do(x)) =
∑
z+

P (y|do(x), z+)P (z+|do(x)) (21)

We can rewrite the effect in eq. (21) as

P (y|do(x)) =
∑
z+

P (y|do(x), z+)P (z+) (22)

=
∑
z+

P (y|x, z+)P (z+), (23)

where eq. (22) follows by the third rule of the do-calculus
together with the fact that (Z+ ⊥⊥ X)GX

(since by con-
struction Z+ contains only non-descendants of Y ), and eq.
(23) follows by the second rule of the do-calculus together
with condition (i).

We can rewrite the second term in eq. (23) summing over
Z− and pull the sum out, which yield

P (y|do(x)) =
∑

z+,z−

P (y|x, z+)P (z+, z−) (24)

By the contraction graphoid axiom conditions (ii) and (iii)
entail (Y ⊥⊥ S,Z−|X,Z+), so we can add {Z−, S} to the
first term of eq. (24) and obtain

P (y|do(x)) =
∑

z+,z−

P (y|x, z+, z−, S = 1)P (z+, z−). (25)

Note that eq. (25) is identifiable and its recoverability is
given by condition 4. QED.

Appendix 3 (algorithm)
In the sequel, we provide a procedure for listing all recov-
erable distributions in the form of P (y,B|A). Note that
P (y,B|A) being recoverable implies other distributions

such as P (y|A,D) is recoverable for all D ⊆ B.

Procedure Sink-Recover(G, Y )
1. Remove V \An(Y ∪ S) from G.

2. Eliminate S.
(a) If Y ∈ PaS , exit with failure.
(b) Otherwise, P (Y, V \PaS \{Y }|PaS) is s-recoverable,

and remove S from G.
3. Eliminate non-ancestors of Y from the graph one by one.
Given P (Y,B|A) s-recoverable, iterate in reverse topologi-
cal order, for each sink node Z.
(a) If Y /∈ PaZ , P (Y,B \ PaZ |A ∪ PaZ \ Z) is s-

recoverable, and remove Z from G.
(b) Otherwise, exit if no non-ancestors of Y can be re-

moved.
4. Now all non-ancestors of Y have been removed and we
have P (Y,B|A) s-recoverable.

(a) For C ⊆ An(Y ) \ {Y },
if (Y ⊥⊥ A− C|C), then P (Y |C) s-recoverable.

The procedure operates traversing the graph and trying to
recover distributions in the form P (y,B|A) until the current
node can no longer be separated from Y given its parents
(and respective ancestors), or it ends listing all distributions
and reaching Y itself. It is not difficult to see that when-
ever the algorithm exits with failure, one of the separability
conditions discussed in the proof of Theorem 1 is violated,
which means that a counterexample for s-recoverability can
be produced.

Interestingly, the Sink-Recover() can be easily modified
to list odds ratios (OR), extending the query-specific treat-
ment given in (Bareinboim and Pearl 2012). Note that the
symmetry of the functional form of the OR can be exploited
in this case so that the separability test in the procedure can
be relaxed. Under this relaxation the current Z must be sep-
arated from X or Y rather than always Y .
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