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Abstract

Cause-and-effect relations are one of the most valuable types
of knowledge sought after throughout the data-driven sci-
ences since they translate into stable and generalizable expla-
nations as well as efficient and robust decision-making capa-
bilities. Inferring these relations from data, however, is a chal-
lenging task. Two of the most common barriers to this goal
are known as confounding and selection biases. The former
stems from the systematic bias introduced during the treat-
ment assignment, while the latter comes from the systematic
bias during the collection of units into the sample. In this pa-
per, we consider the problem of identifiability of causal ef-
fects when both confounding and selection biases are simul-
taneously present. We first investigate the problem of identi-
fiability when all the available data is biased. We prove that
the algorithm proposed by [Bareinboim and Tian, 2015] is,
in fact, complete, namely, whenever the algorithm returns a
failure condition, no identifiability claim about the causal re-
lation can be made by any other method. We then generalize
this setting to when, in addition to the biased data, another
piece of external data is available, without bias. It may be the
case that a subset of the covariates could be measured without
bias (e.g., from census). We examine the problem of identi-
fiability when a combination of biased and unbiased data is
available. We propose a new algorithm that subsumes the cur-
rent state-of-the-art method based on the back-door criterion.

Introduction

One prominent challenge shared throughout the empirical
disciplines is to infer cause and effect relationships - for
instance, one may need to determine how increasing the
state’s educational budget will bring about change in the
average income of the population, whether exposing sub-
jects to a new advertisement campaign would translate into
additional sales revenue, or how patients will react to the
decrease of the drug’s dosage, would they still recover in
acceptable health conditions? Despite the disparate nature
of these questions in terms of subject matter, they evoke
the same set of principles and formal machinery, which
comes under the rubric of causal inference (Pearl 2000;
Spirtes, Glymour, and Scheines 2001).

Causal inference is concerned with the potential mis-
match between the inferential power of the collected data
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and the target inference. In practice, this is particularly rel-
evant since data is almost invariably plagued with various
biases, most prominently, confounding and selection. The
former refers to the presence of a set of factors that affect
both the action (also known as treatment) and the outcome,
while the latter arises when the action, outcome, and other
factors differentially affect the inclusion of subjects in the
data sample (Bareinboim and Pearl 2016).

The problem of identifiability gives formal dressing to
the issue of confounding (Pearl 2000, Ch. 3). Specifically,
it is concerned with determining the effect of a treatment
(X) on an outcome (Y'), denoted P(y|do(x)) (for short,
P,.(y)), based on the observational, non-experimental dis-
tribution P(v) (where V represents observable variables)
and causal assumptions commonly expressed as a directed
acyclic graph. The difference between P(y|do(x)) and its
probabilistic counterpart, P(y|x), is what is called con-
founding bias (Bareinboim and Pearl 2016). This problem
has been extensively studied in the literature. A system-
atic treatment of this problem was given in (Pearl 1995),
which introduced do-calculus. The do-calculus was shown
to be complete for non-parametric identifiability from ob-
servational and experimental data (Tian and Pearl 2002a;
Huang and Valtorta 2006; Shpitser and Pearl 2006; Barein-
boim and Pearl 2012a).

The other source of disparities, selection bias, usually ap-
pears due to the preferential exclusion of units from the sam-
ple. For instance, in a typical study of the effect of grades
on college admissions, subjects with higher achievement
tend to report their scores more frequently than those who
scored lower. In this case, the data-gathering process will
reflect a distortion in the sample’s proportions and, since the
data is no longer a faithful representation of the underly-
ing population, biased estimates will be produced regardless
of the number of samples collected (even when the treat-
ment is controlled). The problem of selection bias can also
be modeled graphically through the explicit articulation of
the sampling mechanism, .S. This mechanism can be seen
as a binary indicator of entry into the data pool, such that
S=1 if a unit is included in the sample and S=0 otherwise.
Clearly, when the sampling process is entirely random, S
is independent of all variables in the analysis. When sam-
ples are collected preferentially, the causal effects not only
need to be identified but also recovered from the distribution



P(v|S=1), instead of P(v) (Bareinboim and Pearl 2012b).

Selection bias has challenged inferences throughout a
wide range of disciplines, including Al (Cooper 1995; Elkan
2001; Zadrozny 2004; Cortes et al. 2008), statistics (Whit-
temore 1978; Little and Rubin 1987; Robinson and Jewell
1991; Kuroki and Cai 2006; Evans and Didelez 2015), and
the empirical sciences (e.g., genetics (Pirinen, Donnelly, and
Spencer 2012; Mefford and Witte 2012), economics (Heck-
man 1979; Angrist 1997), and epidemiology (Robins 2001;
Glymour and Greenland 2008)).

Even though selection and confounding biases appear to-
gether in most of the non-trivial, practical settings, they
have been almost invariably treated independently in the
literature. There are non-trivial interactions between them,
however, which have not been investigated until recently.
(Bareinboim, Tian, and Pearl 2014; Bareinboim and Tian
2015) provided sufficient conditions for the non-parametric
recoverability of the causal effects from selection bias, and
introduced a relaxation of this setting so that external (un-
biased) data could be leveraged. (Evans and Didelez 2015)
developed an approach for discrete models, where assump-
tions on the cardinality of the observable variables allow
the estimation of the distribution over the sampling mech-
anism; in turn recovering the marginal distribution. (Cor-
rea and Bareinboim 2017) introduced a backdoor-like con-
dition that controls for both biases, while (Correa, Tian, and
Bareinboim 2018a) proved completeness for a more general
backdoor criterion that allows for external data.

In this paper, we study the simultaneous effect of con-
founding and selection biases in general non-parametric set-
tings. In particular, our contributions are as follow:

e We prove that the algorithm introduced in (Bareinboim
and Tian 2015) is complete for the task of recoverability
when all data available is biased. In other words, when-
ever the algorithm fails to recover a causal effect, the same
is provable not recoverable by any other procedure.

o We relax the setting above and allow for the use of unbi-
ased data in the form of a joint distribution over a subset
of the observed variables. We develop a new algorithm
for this task and prove that the approach is strictly more
powerful than the current state-of-the-art method (Correa,
Tian, and Bareinboim 2018a).

For the sake of space, the proofs not provided are avail-
able in the Appendix (Correa, Tian, and Bareinboim 2018b).

Structural Models, Causal Effects,
and Recoverability

The systematic analysis of confounding and selection bi-
ases requires a formal language where the characterization
of the underlying data-generating model can be encoded ex-
plicitly. We use the language of Structural Causal Models
(SCMs) (Pearl 2000, pp. 204-207). Formally, a SCM M is
a 4-tuple (U, V, F, P(u)), where U is a set of exogenous
(latent) variables and V is a set of endogenous (measured)
variables. F’ represents a collection of functions F' = {f;}
such that each endogenous variable V; € V is determined
by a function f; € F, where f; is a mapping from the re-
spective domain of U; U Pa; to V;, U; C U, Pa; C V\V,,

and the entire set F' forms a mapping from U to V. The un-
certainty is encoded through a probability distribution over
the exogenous variables, P(u). Within the structural seman-
tics, performing an action X=x is represented through the
do-operator, do(X=x), which encodes the operation of re-
placing the original equation of X by the constant x and
induces a submodel M. For a detailed discussion of SCMs,
causal inference and fusion, we refer readers to (Pearl 2000;
Bareinboim and Pearl 2016).

Following the conventions in the field, we denote vari-
ables by capital letters and their realized values by small
letters. Sets of variables are denoted in bold. We use
typical graph-theoretic terminology with the abbreviations
Pa(C), Ch(C), De(C), An(C), which stand for the union
of C and respectively the parents, children, descendants, and
ancestors of C. The letter G is used to refer to the causal
graph, in which the unobserved common causes are encoded
implicitly through the dashed bidirected arrows; G, denote
the graph resulting from removing all incoming edges to X
and all outgoing edges from Z in G. For C C V, let G be
the subgraph of G composed only of variables in C. Next,
we formalize the notion of identifiability.

Definition 1 (Effect Identifiability (Pearl 2000, pp.77)). The
causal effect of an action do(X=x) on a set of variables
Y is said to be identifiable from P in G if P(y|do(x))
(for short, Px(y)) is uniquely computable from P(v) in any
model that induces G. Formally, for every two models M
and My compatible with G, PM1(v)=PMz2(v)>0 implies
PMi(y]do(x))=P2 (y|do(x)).

The systematic identification of causal effects calls for the
ability to decompose them into easier-to-characterize quan-
tities. For any set C C 'V, we then define Q[C](v), called
c-factor, to denote the following function

QACIV)=Poe(e)=5" [ Plilpa,u)P), (1)

U {i|V;eC}

where pa; is the set of observable parents of V; and wu; is
the set of unobserved parents. Of special interest are the c-
factors associated with the elements of a partition on the ob-
servable variables induced by the presence of bidirected ar-
rows, called C-Components (Tian and Pearl 2002a). The set
V is partitioned into c-components by assigning two vari-
ables to the same set if and only if they are connected by a
path composed entirely of bidirected edges in G.

While identification deals with the problem of controlling
for confounding bias, an orthogonal problem arises when the
observations are not a random sample from the population.
This problem is what we referred to as selection bias (also
called sampling selection bias).

Definition 2 (Effect Recoverability (Bareinboim and Tian
2015)). Given a causal graph G augmented with the se-
lection mechanism, represented by the S node, the causal
effect P(y|do(x)) is said to be recoverable from selec-
tion biased data if the assumptions embedded in G ren-
der the effect expressible in terms of the distribution un-
der selection, P(v|S=1). That is, for any models M, and
My compatible with G, PMi(v|S=1)=PM2(v|S=1)>0
implies PM1 (y|do(x))=PM2(y|do(x)).
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Figure 1: Subgraphs considered by RC while recovering
P, (y) for the model in (a).

Roughly speaking, the paths between an action X and an
outcome Y in a causal graph can be partitioned into causal
(directed paths) and non-causal (spurious). A path is called
proper if it contains no variables in X except at the start-
ing point. The following construction graphically “disables”
proper causal paths, by cutting the first arrow in such paths,
leaving the spurious paths unperturbed.

Definition 3 (Proper Backdoor Graph (van der Zander,
Liskiewicz, and Textor 2014)). Let G be a causal diagram,
and X,Y be disjoint subsets of variables. The proper back-
door graph, denoted as gﬁbﬁ, is obtained from G by remov-
ing the first edge of every proper causal path from X to'Y.

This transformation will allow us to characterize the fail-
ing condition for recoverability in the next section.

Recoverability from Biased Data

In this section, we consider the problem of recovering
the causal distribution when only biased data is avail-
able, namely, evaluating whether Py (y) is computable from
P(v|S=1). First, we consider the state-of-the-art sufficient
procedure available in the literature, and then study the con-
ditions under which it fails.

In order to recover a causal effect of the form Py (y), it is
usually wise to express it as a product of c-factors associated
with the c-components as follows:

Px(y)= ) Px(vix)= ) Q[V\X]

V\Y V\Y
l
=> om]=> [[ei, ©)
D\Y D\Y i=1

where D=An(Y) and D;,...,D; are the c-
components of Gp.

This factorization was employed as the basis for the algo-
rithm RC (Bareinboim and Tian 2015), shown in Alg. 1. RC
attempts to recover each Q[ D;], by Lemma 3 in (Bareinboim
and Tian 2015), every Q[C;] in line 2 is recoverable, and the
function IDENTIFY (E, C;, Q[C;]) (Tian 2002) (line 4) can
be used to determine the identifiability of Q[E] from Q[C;],
where E C ;. If all such factors are successfully recovered,
then the effect Py (y) is recoverable as (2).

To understand the mechanics of the algorithm, we
consider the model in Fig. 1(a) and assume our tar-
get distribution is P.(y). In this graph D={Y} hence
P,(y)=Q[Y], consequently RC({Y'}, P(v|S=1),G)
will be invoked. Since all variables in G are ancestors
of Y or S, line 1’s condition does not apply, and RC

Gvix®

Algorithm 1 Procedure in (Bareinboim and Tian 2015) for
recovering Q[E]

function RC(E, P, G)

Input E a c-component, P a distribution and G a causal diagram
over variables V and S.
Output Expression for Q[E] in terms of P(v|S=1) or FAIL

1: TV \ (An(E) U An(S)) # 0,

return RC (E» ZV\(An(E)UAn(S)) P, gAn(E)uAn(S))

2: Let (', ..., C} be the c-components of G that contains no an-
cestors of S, and let C = | J, C

3: If C = (), return FAIL

4: If E is a subset of some C},
return IDENTIFY (E, C;, Q[Ci])

5: Return RC (E, %, gv\c)

iterates over each c-component of G, adding those with
no ancestor of S to the set C. In this example, G de-
composes into three c-components: {X}, {W;, W5, Y},
and {S}, where only {X} satisfies the condition to get
into C and Q[X] is recovered as P(z|wy,ws, S=1).
Since {Y'} is not a subset of {X}, line 5 recursively calls
RC({Y}, P(v\Szl)/P(x|w1, wa, S:].)7 Q{W27W17y75}).
This new graph is shown in Fig.1(b). Now that X is not
in the graph, the variable W; is no longer an ancestor
of either Y or S, then line 1 performs a recursive call as
RC({Y'}, >y, P(v[S=1)/P(x|w1,w2,5=1), G{w, v s})-
In the graph g{W27Y, 5} shown in Fig. 1(c), there
are three c-components: {W>},{Y}, and {S}.
Since Y is not an ancestor of S in this graph,
line 2 will recover Q[C;] where C1={Y} as
2w, Pylz, wy, wa| S=1) P(wy, we| S=1)/ P(w,|S=1)
and make C={Y}. Next, because our target {Y} is a subset
of C1={Y}, line 4 recovers Q[Y] = Q[C4] and returns it,
which, as noted before, corresponds to P, (y).

While RC was shown to be sound, it was not shown to
be complete, that is, whether a FAIL triggered by line 3 im-
plies that the target causal effect is not recoverable, or if the
algorithm is not powerful enough to recover the expression.

In the following, we first present a necessary condition for
the causal effect to be recoverable and then use it to show the
completeness of the procedure RC.

Theorem 1. Let X, Y C 'V be two disjoint sets of variables
and G a causal diagram over V and S. If (Y JL S)gpbd, then
XY

Py (y) is not recoverable from P(v | S=1) in G.

The necessary condition in Thm. 1 helps us to show that
when RC fails, Px(y) is not recoverable.

Theorem 2. Let X and Y be two disjoint sets of variables
and G a causal diagram over V and S. Let D=An(Y)g,,, x
and D1, ..., Dy be the c-components of Gp. Then, the effect
P.(y) is recoverable from P(v|S=1) if and only if each
D;,i =1,...,0is recoverable by the function RC.

Thm. 2 implies that the strategy employed by RC covers
all recoverability scenarios, and all other algorithms con-
cerned with this setting will be in some form or shape, at



most, equivalent to it. In other words, the recoverability al-
gorithm in (Bareinboim and Tian 2015) is complete.

Recoverability with External Data

Whenever the conditions of Thm. 2 are not satisfied, the tar-
get effect is provably not inferable from P(v|S=1). One
common strategy to circumvent this challenging situation is
to try to find and leverage alternative sources of data. Pop-
ular baseline covariates such as age, sex, and ethnicity can
be obtained without bias in many cases, for instance, using
data from the census or smaller pilot studies.

We supplement Def. 2 to formally account for the avail-
ability of a new source of data, i.e.,

Definition 4 (Recoverability from Selection Bias with Ex-
ternal Data). Given a causal graph G augmented with the
selection mechanism, represented by the S node, the causal
effect Py(y) is said to be recoverable from selection bias
with external data P(t) if for any two models M, and My
compatible with G, PM1(v|S=1) = PM2(v|S=1) > 0 and
PMi(t) = PM2(t) > 0 implies P21 (y) = PMz(y).

In other words, Def. 4 requires the causal effect to be
uniquely computable from the available data (under selec-
tion bias and from the external source) and the assumptions
embodied in the causal model.

We consider unbiased external data in the form of a distri-
bution P(t%), where T® C V is a set of variables measured
(jointly) without bias. As shown in the next lemma, addi-
tional information can be inferred from the external data and
model assumptions.

Lemma 1. Given P(t°), let T/ be a set of variables such
that (S 1L T’ | T°), and let T = T° U T/, then P(t) is
recoverable.

Proof. P(t) = P(t'|t% S=1)P(t?). O

From this point on, we will use T to denote a set of vari-
ables such that P(t) is available (following from P(t°)),
and let R = V'\ T be the rest of the variables. Let P.J(G, T)
denote the graph derived from the original graph G by repre-
senting the variables in R as unobservables (with bidirected
edges), known as the projection of G on the set T (Verma
1993) (see also Def. 1 in (Tian and Pearl 2002b)). Accord-
ingly, we can define c-factors QQg|[.] in this projection, de-
noting the following function

Qr[C] = Py c(c) = P\ (cur)(©)
:Z H P(vi | pa;,u;)P(u). (3)

U,R {i|V;€CUR}

In other words, the function @ r[.] represents a c-factor in G
when the variables in R are treated as latent variables !.

The next result delineates the new c-factors that can be
recovered from P(t):

Lemma2. Let T CV,R=V\T,and T1,...,T,, be the

c-components of PJ(G, T), then all Q gr[T};] are recoverable
from P(t).

!C-components with arbitrary variables as latent variables are
defined in (Tian and Pearl 2002b).

Proof. We have that

m

P(t) =>"P(v) =[] QrlTxl- )
R k=1

By (Tian and Pearl 2002b, Lemma 2), all Q g[T}] are recov-
erable from P(t). O

Building on Lemmas 1 and 2, we now state the main result
of this section:

Theorem 3. Let H C V U {S}, such that H is parti-

tioned into c-components Hy, ..., H;, Hs in the subgraph
Gy, where S € H,. Assume
_1)) = QUL(v. 5=1) A
fperl s=0) = SRE T, ©

where f(P(v|S=1)) is some recoverable quantity, and
P(t) is available. Let Ty = T \ De(V\H)g and T’ be
the set of all variables in H such that (T' 1L S | T%)gy-
Also, let Ty = T U T and let Ry = H \ Tq. Then,
for j=1,...,1, Q[H,] is recoverable if H; contains no vari-
ables that are both ancestors of Hs and belong to Ry or its
children (i.e. H; N An(Hs) N Ch(Ru) = 0) in Gu.

Proof. (sketch, see Appendix C for details) Let a topological
order of the variables in Hbe V;,, < --- <V}, in Gy. Let
H=' = {Vj,,..., Vi, } be the set of variables in H ordered
before Vj,, (including V},,), and H>* = H \ H=' for i =
1,...,k, and HS9 = (). The assumptions of the theorem
allow us to recover Py\p (ty) from f(P(v|S=1)) and P(t).
For any H that satisfies the condition of the theorem, the
associated c-factor can be recovered as:

QH;] = Sty Pen(ta)
=
{ilVi, EH;NAn(H,)} 2p>i-1nry Prn(ta)

i f(P(v|S=1))
H Eh>i,Vh,i f(P(V|S:1))

(6)

{i|Vn, €Hj\An(H)}
]

Thm. 3 will be the main driving force for recovering
causal effects from combined biased data P(v|S=1) and
unbiased data P(t). To give an example of how this result
can be used, consider the model in Fig 2(a) and assume we
have external data over T°={Z}. Then, T={Z, X, Y} be-
cause (SUX,Y|Z), R=V\T={R,W}, and H,={S5, Z}
which 1s the c-component that contains S. Also, the biased
distribution factorizes as follows:

Ql5,7]
HseeWielrea). @

Thm. 3 would allow us to recover Q[X] and Q[Y] since
they do not contain any ancestor of Hg.

P(v|S5=1)=

Recovering Causal Effects Systematically

In order to recover the causal distribution Py (y) systemati-
cally, (Bareinboim and Tian 2015) proposed a strategy that
recovers each Q[D;] in Eq. (2) one by one. It turns out that
when external data P(t) is available, each Q[D;] being re-
coverable is no longer necessary for the overall recoverabil-
ity of Px(y). To witness, let us follow up on the example



from Fig 2(a), introduced at the end of the last section. Fol-
lowing the strategy dictated by Eq. (2), we note that

Pi(y) =Y QY. Z Rl =) QIYVIQIZIQR].  ®)

Thm. 3 licenses the recoverability of Q[Y], but it is not
difficult to shown that neither Q[R] nor Q[Z] is recoverable.
Perhaps surprisingly, however, P, (y) can be recovered as

> QY] QIRIQ(Z]=) P(ylz,z,S=1)P(z). (9)

The key observation here is that while Q[R] and Q[Z] are
not recoverable individually, >, Q[R]Q[Z] is, in fact, a
function of Z and equal to Qr[Z] (see Eq. 3), which can
be recovered from P(t) = P(z,x,y) as P(z) via Lemma 2.

To formally account for this situation, we re-write the
causal effect in Eq. (2) by splitting D \ Y into two parts:
A=D\Y)NTand B=(D\Y)NRwhere R =V\T,
and then we treat elements in B as latent variables while
defining c-factors @pg[.] in the resulting projected graph
PJ(Gp,D \ B), as follows:

l L
Py) =Y [[emi=>_T[@eslc]. a0

D\Y i=1 A j=1

where D=An(Y)g,, x> D1, ..., D are the c-components
of Gp, C1, .. ., Cy are the c-components of PJ(Gp, D\ B),
and c-factors Q) g[C;] are defined as

elc]=> ]I

UUB {i|V;€C,;UB}

P(vi|pa;,u;)P(u). (11)

Qg[C;] could also be expressed in terms of Q[D;] in the
following form:

Qzlci1=>_ I e, (12)
B; {ilDieF;}

where B; are disjoint and possibly empty sets such

that Uﬁlej:B, and Fiy,...,F, form a partition of
{Dy,... D},

Under certain conditions, a c-factor Q [C;] may be equal

to the c-factor Qg [C};], defined in P.J (G, T), which is poten-

tially recoverable in terms of the unbiased distribution P(t).

Lemma 3. Let C; be a c-component of PJ(Gp,D \ B). If

B N Pa(C;) =R N Pa(Cy), then

(i) QB[C;] = QrlC;], where Qr[C;] is a c-factor in
PJ(G,T) as defined in Eq. (3); and

(ii) Let Ty, ..., Ty, be the c-components of PJ(G,T), then
C'j must be a subset of some T},

Proof. (i) Let B; = B N Pa(C};). Any variable in B that is
not in B; does not appear in the expression in (11), and can
be summed out, leading to

Qs[C) = > 1T

UUB; {i|V;€C;UB;}

P(vi|pa;, u;)P(u). (13)

(@ T° = {Z}

(b) T® = {W2}
Figure 2: Examples of recoverability tasks for the effect Py (y).

Model in (a) can be recovered with external data on Z. Model in
(b) is recoverable with external data on W5 or W7i.

Similarly, from (3) we have:

Qr[Cj] = Z H

UUR {i|V;€C,;UR}

P(v;|pa;, u;)P(u).

Let R; = RN Pa(C;). Then any variable in R, that is not
in }?j can be summed out, leading to

Qr[Cj] = Z H

UURJ {i‘wec.7UR.7}

P(vi|pa;,u;)P(u). (14)

It is clear that if R; = B;, then (14) is equal to (13).

(ii) Since D C V and B C R, a c-component of
PJ(Gp,D \ B) must be a subset of a c-component of
PJ(G,T). O

The importance of Lemma 3 stems from the fact that
Qr[C;] is potentially identifiable in PJ(G, T) from the un-
biased distribution P(t) based on Lemma 2. Specifically,
we can use IDENTIFY(C},T), Qr[T%]) to try to recover
Qg[C;] = Qr[C;]. If Qr[C}] is not identifiable from P(t),
then we further attempt to recover QQ3[C;| by recovering
each Q[D;] in Eq. (12) factor by factor.

To recover an individual Q[D;], it turns out the RC algo-
rithm (Alg. 1) is not complete anymore in our setting (even
if line 2 of RC is enhanced with Thm. 3). Extending RC,
we develop a new algorithm called RCE (Alg. 2) to recover
any target c-component Q[E]. RCE attempts to systemat-
ically recover Q[E| by recovering, using Thm. 3 (line 2),
the c-component Q[C;] of G that contains E, and then call
the function IDENTIFY to recover Q[E] from Q[C;] (line
3a). To facilitate this, RCE reduces the problem to simpler
subgraphs, by removing irrelevant non-ancestors (line 1) or
other recoverable c-components (line 3b and line 4) from
the current graph. These other c-components are recovered
either by Thm. 3 (line 2) or by recursively calling RCE (line
4). Due to the recursive nature of the process, RCE may try
to compute a c-component more than once, which can be
avoided by keeping track of the previous queries. For sim-
plicity we omit these practical details.

Putting these results together, we develop a general, sys-
tematic procedure for recovering causal effects called IDSB.
The function IDSB in Alg. 3 accepts as input two disjoint
sets X, Y, distributions P(v|S=1), P(t?), and a causal di-
agram G; it outputs an expression for Px(y) in terms of the
input distributions or FAIL. IDSB starts by simplifying the



Algorithm 2 Recursive function used to recover an arbitrary

c-component

function RCE(E, P, G)

Input E a set of variables such that E is a c-component, P a dis-
tribution over V , G a causal diagram over variables V and S.
P~ (t) a distribution over T and G* the original graph over vari-
ables V* and S are defined globally.

Output Expression for Q[E] or FAIL

1: Let W = An(E) U An(S). If VAW #£ (,
return RCE (E, 2w P gw)

2: Let C4, ..., Cy be the c-components of G that are recoverable
by Thm. 3 (with f(P(v|S=1)) = P and P(t) = P*(t)).
Let C = Ul C;

3: IfC #0,

(a) If E is a subset of some C},
then return IDENTIFY (E, C;, Q[C}])

(b) Return RCE (E, %, g(vu{S})\C)
4: For each c-component B; of G that does not contain E such that
Z=V\ (An(S) U An(By)) # 0:
Q[Bi] = RCE(Bi, Y., P, Gvu(synz)
If Q[B;] # FAIL, return RCE (E, ﬁ, g(vu{s})\m)
5: Return FAIL

model via removing irrelevant non-ancestors (line 1) and re-
covering P(t) using Lemma 1 (lines 2, 3). IDSB then re-
covers Px(y) using Eq. (10) by recovering each Qg[C}]
(line 5). For each Q) g[C;], IDSB first attempts to recover it
from P(t) based on Lemma 2 by calling the function IDEN-
TIFY if the condition in Lemma 3 is satisfied. If this fails,
IDSB tries to recover ) g[C;] using (12) by calling RCE
for each Q[D;]. The next theorem states that IDSB is sound.

Theorem 4. The procedure IDSB is sound.

Due to page limits, we provide the proof of Thm. 4
in the Appendix D. Nevertheless, we will illustrate its
mechanics using the example from Fig. 3(a) where
we assume P(v|S=1) and P(t°) are given, with
TO={V5, V3, Vs}, and the goal is to recover P, (y). Initially,
in line 1 W = V. Line 2 finds that (SILX,V;|T?),
hence T={X,V;,Vo, V5, V5} and line 3 recovers
P(t)=P(x,v1|va, v3,v6, 5=1)P(vs,v3,v6). At line 4,
we have D={V;,V;, Y}, R={Vy,V5,Y}, A={V;s}, and
B={V5}. The graphs Gp, PJ(G,T), and PJ(Gp,D\B)
(Fig. 3(b), (c), and (d) respectively) are derived from G
(Fig. 3(a)). The table in Fig. 3(i) summarizes the decompo-
sition of these graphs and recalls how each c-component
and c-factor are denoted by IDSB in line 4. At this point, we
know from Eq. (10) that P (y)= >y, Q5[Y]Q5[Vs]. Also,

QelY]=Q[Y], Qs[Vs]|= ZVS Q[Vs, Vi], corresponding to
Blzm, BQZ{V5}, Flz{{Y}} and FQZ{{Vg,, Vb}} Clearly
B=DB,UB; and F}, F5 constitute a partition over { D1, D2 }.

Continuing with line 5, the algorithm considers the
first c-component C1={Y}, and since BNPa(Y)=0 #
RNPa(Y)={Y}, it calls RCE to try to recover Q[Y]
(which is equal to @ p[Y]) in the graph G. The recursion in-
duced by this call to RCE is depicted in Fig. 4, where each

Algorithm 3 Algorithm capable of recovering Px(y) from
selection bias with external data

function IDSB (X, Y, P, P(t°),G)

Input X,Y disjoint sets of variables, P(v|S=1) a distribution,
P(t°) distribution over a set of variables T?, and G a causal
diagram over variables V and S

Output Expression for Px(y) in terms of P(v|S=1) and P(t°)
or FAIL

1: Let W = An(Y) U An(S), G + Gw, P < > y\w P
2: Let T C W be the set of all the variables such that
(SILT/|T°NW)g, and T=T'U(T°NW)
3: Recover P(t) by Lemma 1
4: Let D = An(Y)gy x»
Let D4,..., D; be the c-components of Gp,
LetTh,. .., Tm be the c-components of PJ(G,T),
R=W\T,A=D\Y)NnT,B=(D\Y)NR,
Let C1, ..., C; be the c-components of PJ(Gp,D \ B), such
that Qg [C}] is given by Eq. (12).
5: For each C);
If BN Pa(C;) = RN Pa(Cy) then
Assume C}j is a subset of T}
@3[C;] = IDENTIFY(Cj, Ty, Qr[Tk])
If BN Pa(Cj) # RN Pa(Cj) or Qp[C;] = FAIL, then
QB[C]] = ZBj Hi,DiEFj RCE (Dzv P7 g)
If @B[C;] = FAIL, then return FAIL

6: Return >_ Hﬁ:l QB[Cj]

edge is annotated with the line number (in RCE) that initi-
ates the call and Fig. 3(e)-(h) contain the relevant subgraphs.
Each P i=0, . .., 4 stands for the distributions associated
with the corresponding subgraph, obtained as follows

PO = p(v|S=1), (15)
ph = pO© /Q[Vg] , where (16)
QW= L P®/> L P®), (]
@ _ €))
pe) — P(z)/Q[X] , where (19)
_ ©) &)

QIXI=Y, P /ZVM&X’Y P and (20)

) _ 3)
W = ZV&wP . Q1)

Finally, the result returned by RCE is:
— p1) (4)

QY] =P / > PW. 22)

After Q[Y] is computed, IDSB moves on to Co={Vs}.
Since BNPa(V)={Vs }=RNPa(Vs), we have that Q g [Vs]
is equal to QRr[Vs] which is potentially identifiable from
Qr[T2] where To={V3,Vs}. Next, IDSB calls IDEN-
TIFY ({Ve },{ V3. Vo L Qr[T2]) to obtain Q[Vs]=P(uvs).
Despite IDSB’s generality, it is not clear at this point
whether there are positive cases not covered by the algo-
rithm - i.e., cases computable from P(t°) and P(v|S=1),
but where IDSB returns “FAIL”. Still, the current state-of-
the-art procedure that accepts external data, called General-



() Gp (c) PJ(G,T)

(d) PJ(Gp,D\B)

() Gvugsi\ive,vi}

(©) Gvugsi\{va}

@ ) Graph

C-Components Notation | C-factor
@ gD {Y},{V57V6} D17Z:172 Q[']
e PJ(gDvD\B) {Y}v{VG} CJ»]:152 B[]
PJ(G.T) [ {XVi}{Vs,Ve}.{Va} | Tx.k=1,23| Qrl[]

(@ Gvuispgvevixy () Gy vs ve, sy

(i) C-components of the graphs in (b), (c), and (d)

Figure 3: Example of a model and the transformations involved in recovering the target causal effect. We assume P(v|S=1)

and P(vq,v3,vg) are given.

RCE({Y},P© g)
| 3b
RCE({Y},PW, Gyisyvqvay)
[1
RCE({Y},P?, Gviugsp(vai})
3b]|
RCE({Y},P®), Gyisy\(va,va,x)
[1
RCE({Y},PW, Gy vs vi.51)
‘ 3a
IDENTIFY({Y'}, {Y'}, Q[Y])

Figure 4: Recursion of RCE when used to recover Q[Y] in
the model in Fig. 3(a).

ized Adjustment Criterion (GAC) (Correa, Tian, and Barein-
boim 2018a), is constrained to backdoor-like expressions.
The next proposition compares the power of the two ap-
proaches.

Theorem 5. IDSB is strictly more powerful than the Gen-
eralized Adjustment Criterion for the task of recovering a
causal effect Px(y) from a combination of biased distribu-
tion P(v|S=1) and unbiased distribution P(t°) in G.

We outline how this statement can be proved (see Ap-
pendix D for the formal proof). We first show that whenever
IDSB fails to recover Px(y), then GAC is also unable to
recover the effect. Then, to show that IDSB is strictly more
general, we present an example where IDSB recovers Py (y)
but GAC fails. Consider the problem of recovering Py (y) in
the model in Fig. 2(b) with external data over T® = {WW,}.
GAC asks for the following three conditions:

e Condition (iii) requires a set ZT to be available from ex-
ternal data such that the independence (SILY|ZT) grod
XY

holds. For this model ZT={W,} suffices.

e Condition (i) requires that no covariate should be a de-
scendant of a variable in a proper causal path from X to
Y, which is also satisfied by Z={W>}.

e However, condition (ii) requires the independence
(XLLY|Z,S)gpea to hold, which cannot be satisfied in
XY

this model by Z={W5}, or Z={W;,W>}, or any other
Z

Since not all conditions are satisfiable, GAC fails. Nev-
ertheless, IDSB is able to recover P,(y). To witness,
note that D=An(Y)g,, x={Y'}, hence P, (y)=Q[Y]. Also
T={W;,W2,X,Y}, R=0, The set {Y'} is a subset of c-
component 71={W1,X,Y} in PJ(G,T). IDSB will call
IDENTIFY ({Y'}, T1, Qr[T1]), where Qr[T1] is recoverable
from P(t)=P(y,z,wi,w2)=P(y,z,w1|ws,S=1)P(w3) by
Lemma 2, and obtain
P ( )_ EWl P(y,x | wlva)P(wl)
T, Pl [wiw, ) P(wn)

(23)

Conclusions

We investigated the challenges arising due to confounding
and selection biases, which come under the rubric of recov-
erability of causal effects. We first studied the algorithm RC
(Alg.1) (Bareinboim and Tian 2015), which takes as input a
causal diagram and a biased distribution. We supplemented
the algorithm with a necessary condition for recoverabil-
ity (Thm. 1), and proved that RC is complete for this task,
namely, it recovers all effects that are indeed recoverable
(Thm. 2). We then relaxed the setting to allow the incorpora-
tion of unbiased data (Def. 4). We developed the algorithm
IDSB (Alg. 3), which takes as input a combination of biased
and unbiased data. We proved that IDSB is strictly more
powerful than the current state-of-the-art method available
(Thm. 5). Since confounding and selection biases are prob-
lems pervasive across disciplines, we hope that the methods
developed here should help to understand and alleviate this
problem in a broad range of data-intensive applications.
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Appendix A. Proof of Theorem 1

The helping lemmas used in this proof are shown after the
main proof for convenience. We advise the reader to consult
them as needed.

Theorem 1. Let X, Y C 'V be two disjoint sets of variables
and G a causal diagram over V and S. If (Y JL S)gpbd, then
XY

Py (y) is not recoverable from P(v | S=1) in G.

Proof. Suppose the stated condition is satisfied there exists

an active path p between some Y’ € Y and S in Gi%, bd

Without loss of generality, let Y be the element in Y con-
nected to S with the shortest active path p. Let X’ be the
variables in X that lie in p. Let G’ be the subgraph of G
that contains the same set of variables but only the edges
in p. We will show that Py (y’) is not recoverable from
P(v | S=1) in G’, when this is the case it’s easy to check
that Py (y’) Py (y’) is also not recoverable in G’. Then by
lemma 5 this will imply in turn that Py (y) is not recover-
able in G.

Let V represent all variables in the graph except for the
selection mechanism S, and let Q = Py (y'). We construct
two SCMs M7 and M> compatible with G, that induce prob-
ability distributions PMi(v | S=1) and PM2(v | S=1),
respectively, such that

PMi(v| S=1) = PM2(v | S=1) (24)
s (25)

Let M; be compatible with G’ and My with Q’g, enforcing

(V 1L S) pa,. Without loss of generality, all variables are
assumed to be binary. The construction parametrizes P!
through its factors (as in lemma 4) and then parametrizes
PM:z to enforce (24). As a consequence, PMz(v) =
PMz(v | S=1) = PMi(v | S=1).

In the sequel we consider every possible form in which p
could manifest in G:

case 1 Y' € Pag
The causal effect in M>:
QY = PMz(y) = PMi(y' | 5=1)
B PMi(y S=1)
Sy Py, 5=1)
PM(S=1]y")PM(y)
~ PMi(S=1]y) PM (y )+ P (S=1[y) P ()

Using lemma 4, let PM1(S=1 | y’) = a and PM1(S=1 |

y') =B with0 < a, 8 < 1and a # 8 and PM1(y) =
1/2 We obtain:

(67

My _
Q e

By the same reasoning Q™1 = 1/2 which is never equal
to QM2 given this parametrization.

case 2 There is a directed path p from Y’ to S.
Let R be the parent of S in such path and let W be the
set of variables in the path from Y’ to R. Note that even if

W N X # 0, QM2 = P(y'), then, similar to the previous
case:

PMi(y' S=1)

My __ My / _ _ 9

The numerator can be rewritten as:

PMi(y', S=1) = ZPMl (y,r,S=1)

-5
Factorizing the denommator analogously, @2 becomes:
QM: — PM(y) 3 P (r [y) P (S=1] 1)
Doy PMY) 2o PM(r [ ) P (S=1 | r)
Use lemma 7 to set PMi(r | y) = 1/2 + ¢/2, PMi(r |
y') = 1/2 — €/2 where € = (1/5)* (using p = 3/5,q =
2/5). Also let PM1(S=1 | r) = 2/3 and PM1(S=1 |
7) = 1/2and P (y') = 1/2. This parametrization leads
to QM2 = 1/2 + ¢/14 and QM1 = 1/2 which are never
equal.

case 3 The path p connecting Y and S goes through an an-
cestor of both.
Let IV be the common ancestor of Y/ and S in p. Let R be
the parent of S and @ the parent of Y in the mentioned
path. Let W7 and W, be the nodes in the paths from NV to
Q@ and from N to R respectively. Consider an equivalent
graph G” where the arrows in the subpath from N to () are
reversed. Any model constructed for G” can be translated
to a model compatible with G’ using lemma 6. Again we
have QM2 = PMz(y') Following the same derivation as

in case 2 yields:
PMi(y' S=1)

QY =
2y PMi(y, S=1)
The numerator of the last expression can be rewritten as:
PMi(y,S=1) =% PM(y,q,5=1)
Q
=Y Py ¢ P (@) P (5=1] q)
Q

By rewriting the denominator similarly, and following an
analogous process for Q™ , we have:

QM =" PMi(y | g)P M (q)
Q
Yo Py | 9P (g) PM(S=1] q)
Yy PMi(y | ¢ PMi(q)PM(S=1| q)
Lemma 7 can be employed to set PMi(r | ¢) = 1/2 +
€/2,PMi(r | §) = 1/2 — ¢/2 where ¢ = (1/5)% (u
ing p = 3/5,q = 2/5). Define PM1(S=1 |
and PM1(S=1 | 7) = 1/2. Calculate PM1(S
S g PMi(r | q)PM(S=1]r). Also let PM
3/4, P (y' | g) = 1/2, finally P (q) =
parametrization leads to:
Q]\Il _5 Q]\lg _ § €
8 s 156

which are never equal.

PM1 (r | y)PMl(S 1]r)

QM: =

fily

(



(a) Case 1 (b) Case 2

®
5 ©

Figure 5: Graphical representation of the cases stated in
Thm. 1

()
®

(c) Case 3 (d) Case 4

case 4 pis a confounding path between Y/ and S consisting
of unobservable variables.
The models for this case can be constructed as in case
3, then moving the variables in the in the path ) — R
(included) from the set of observables to the set of unob-
servables.

O

In order to prove non-recoverability, it is imperative to
construct structural causal models that serve as counter-
examples to the recoverability of the causal effect. The fol-
lowing lemmas are useful to construct such models. The first
one, lemma 4 licenses the the direct specification of the con-
ditional distributions of any variable given its parents, in ac-
cordance to the causal diagram G.

Lemma 4 (Family Parametrization). Let G be a causal di-
agram over a set V of n variables. Consider also, a set of
conditional distributions P(v; | pa;),1 < i < n such that
Pa; is the set of nodes in G from which there are outgoing
edges pointing into V;. Then, there exists a model M com-
patible with G that induces P(v) = []\_; P(v; | pa;).

Proof. (By construction) For every V; define any ordering
on the values of its domain, and let v (j ) refer to the gth
value in that order. Also, define a contmuous unobservable
variable U; ~ U|0, 1] (uniformly distributed in the interval
[0, 1]) for every variable V; € V. Then, construct a structural
causal model M = (U, V, F, P(u)) where:

e V is the same set of observables in G
e U=UiL, U;
o F=

{fl(pamui)*mf{ k=1 (Uz‘(j)‘l’ai)>ui},1<i< TL}

e U, ~U[0,1,1<i<n

At every variable V;, given a particular configuration of Pa;,
M simulates its value using the distribution P(v; | pa;). By
the Markov property, the joint distribution will be equal to
the product of those distributions. O

The following lemma extends a result from (Tian 2002)
to the context of recoverability.

Lemma 5. Let X, Y C 'V be two disjoint sets of variables
and T C 'V another set of variables. If Py(y) is not re-
coverable in G from P(v | S=1), P(t), then Px(y) is not
recoverable in the graph resulted from adding a directed or
bidirected edge to G. Equivalently, if Px(y) is recoverable
in G from P(v | S=1), P(t), then Px(y) is still recoverable
in the graph resulted from removing a directed or bidirected
edge from G.

Proof. The proof is analogous to the proof of lemma 8 in
(Tian 2002) with the extra consideration of selection bias.
For any V; € V U {S} let Pa; be defined as the set of
observable and unobservable parents of V; in G.

If Py (y) is not recoverable in G, then there exist two mod-
els with the same causal graph G, M; and M5 such that

PMi(v| S=1) = PM2(v | S=1) > 0,
PMi(t) = PM2(t) > 0
and P (y) # Po"(y) (26)
where
PMr(v|S=1) 27
P(5= 1|pa
:Z P(S HPvz|pa (u) k=12
19) Viev
(28)
PMe(t ZZ HPvl|pa JP(u) ,k=1,2
U V\TV,eV
(29)

For a graph G’ with extra edges added to G, we can always
construct new models in such a way that the added edges are
ineffective.

(i) Let G’ be the graph identical to G except with an extra
edge W — V;. Then P(v | S=1) and P(t) decompose
as

P(v|S=1) (30)
S 1pa
—Z PE) by ) T Pl Pl
Viev,
ViZV;
31)
:Zzp(vjlpaqu,w) H P(vi|paj ) P(u)
U V\T VeV,
ViZV;

(32)



We construct two models M/ and M} with causal graph

G’ as:

PML’ (Uz|pa:r):PMk (’Ui|pa;r) ai%ja k:172
(33)

PMi(S=1|paf)=PMr(S=1|pa};) k=12
(34)

PMi (vj\pajj,w)ZPM’“ (Uj\pajj) k=12
(35)

PM; (u) = PMx (u) k=12
(36)

Clearly if the pair (Mj, Ms) satisfies (26) so does
(M7, M}). Hence Py (y) is not recoverable in G’.

(ii) Let G’ be the graph identical to G except with an extra
edge Vi <+ V;. Then P(v | S=1) and P(t) decompose
as

P(v|S=1) 37
P(vjpay,,u')P(vi|pay,,u')

11 P(vilpa)P(u) (38

Vi€V, Vi £V}, Vi#V;

Zzpv]lpav y U

U V\T

IT P(vilpal)P(u) (39)

ViEV,Vi#£V; Vi£Vi

)P(vi|pa,, u')

t)=> P

Where U’ represents a new unobservable variable. We
construct two models M/ and M} with causal graph G’

as:

PMi(vi|pal ) =P (vilpal) L iAj il k=12
(40)

PMi(S=1|paf)=PMx (S=1|pa};) k=1,2
41)

PMi (3] pa;, u)=PM* (v;]pa;)) vi=g,l, k=1,2
(42)

PMic(u)=PM (u) k=1,2

(43)

Again, if the pair (M, M) satisfies (26), so does
(Mj, M}). Hence Px(y) is not recoverable in G'.

(iii) Let G’ be the graph identical to G except with an extra
edge W — S. Then P(t) is exactly the same and P(v |

S=1) decomposes as
H P(vi|paj)P(u)

P(vls=1)=" M
U V,ev
(44)

We construct two models M/ and M), with causal graph

G’ as:

PM; (vi\paj'):PM"‘ (Ui|paj) Jk=1,2 (45)
PMi(S=1|pad, w)=PM(S=1|pad) ,k=1,2 (46)
PMi(u)=PMx (u) k=1,2 (47)

Since P(S=1) = 3=+ P(S=1| pa’t)P(pal), that dis-
tribution will remain the same. Then, if pair (M7, Ms)
satisfies (26) so does (M7, MJ). Hence Px(y) is not re-
coverable in G'.

(iv) Let G’ be the graph identical to G except with an extra
edge V; <> S. Then P(v | S=1) and P(t) decompose as

P(v]S=1) (48)
_ (S=1|paf, u ) p
-3 pn 3

II Pwilpeh)P) 49

(vjlpag,,u')

VeV, Vi #V;
t)=> P)) > P(vlpa),u) (50)
u’ U V\T
I Pwilpal)P(u) (51)
ViEV,ViV;

Where U’ represents a new unobservable variable. We
construct two models M| and M} with causal graph G’

as:
PM; (Ui|paj):PM’“ (vi|paj') £ G k=12
(52)
P (S=1|pat, u)=P""(S=1|paf) k=12
(53)
PMi (Uj\pa;’j,u’):PMk (vjpail,) k=12
(54)
(55)

Again, if the pair (M, M) satisfies (26), so does
(M7, M}). Hence Px(y) is not recoverable in G'.

O

The following lemma permits the construction of a struc-
tural causal model M compatible with a causal diagram G,
using another model compatible with a related, but different,
causal diagram G’ where some arrows in a chain of variables
have the reverse direction.

Lemma 6 (Chain Reversal). Consider a causal diagram G
and a probability distribution P(v) induced by any SCM
M compatible with G. If G contains a chain of vertices
Ry — Rs,...,R; where each node represents a binary
random variable, for every 1 < i < { the only incoming
edge into R; comes from R;_1. Then, there exists another
model M’ where the direction of the arrows along the chain
R1 — Rs, ..., Ry is reversed compatible with same distri-
bution.

Proof. (By construction) Given M and any probability dis-
tribution P(v) induced by it, compute the joint distribution
P(rq,...,re,t). Construct a new model M’ with the same
set of observable variables and identical functions for all
variables but for Ry, ..., Ry,T. For those, assign the func-
tions fg,(ri—1,Ur,;),1 < i < £ — 1 as in lemma 4. Also,



let fr,(Ur,) = Ug,, P(Ug,) = P(r¢). By lemma 4 the
sub-models composed of Ry, ..., R,, T in M’ and M pro-
duce the exact same distribution and since the set of parents
and function for every other part of the model are exactly the
same the overall distribution is identical. 0

Finally, the following lemma allows to simplify the
parametrization of an arbitrarily long chain of binary vari-
ables.

Lemma 7 (Collapsible Path Parametrization). Consider a
causal diagram G and a probability distribution P(v) in-
duced by any SCM compatible with G. If G contains a chain
Wo — W1 — ... — Wy, where each W; represents a
binary random variable, for every 1 < i < k the only in-
coming edge to W, is from W;_1, and every conditional
distribution P(w; | wi—1) = p, Plw; | wi—1) = ¢q,
for some 0 < p,q < 1. Then, the conditional distribution

(=1 (p—a)* _ Nk
P(wy, | wo) = =0 p(yy | 15) = CUd
Proof. Since Wy, ..., Wy is a chain, the value of Wy is a
function of Wy when all other W1, ..., Wj_, are marginal-
ized. All W;, 1 < ¢ < k are independent of any other
variable given Wy. Therefore, the distribution P(wy, | wo)
is equal to Zif:ll Hle P(w; | wi—1), because any other
variable can be removed from any product in this expres-
sion and summed out. This distribution can be calculated
as the product of 2x2 matrices corresponding to the condi-
tional distributions P(w; | w;—1) when encoded as W)y, =
p q
1—-p 1—g¢q
ily available if W}, is decomposed using its eigenvalues

. The product of k of such matrices is read-

{1, p — ¢} and eigenvectors { {ﬁ, —1} )1, 1]}

k—1 k
P(wg | wo) = HP w; | wi—1) (WM)k
i=1i=1
(p=1)(p—q) a—a(p—q)*
— g—p+1 q—p+1
1 - =e=De-9"  _ g-ap-a)*
q—p+1 q—p+1
(56)
O

Appendix B. Proof of Theorem 2

Theorem 2. Let X and Y be two disjoint sets of variables
and G a causal diagram over V and S. Let D=An(Y )¢, x
and D+, ..., Dy be the c-components of Gp. Then, the effect
Py (y) is recoverable from P(v|S=1) if and only if each
D;,i=1,...,Lis recoverable by the function RC.

Proof. (if) We have

y)=>_ [[QDi] (57)

D\Y i

Because RC is sound, if every D; can be recovered by that
procedure, Py (y) is then recoverable by (57).

(only if) RC may fail in two ways: first, when IDEN-
TIFY (D;, C;, Q[C;]) fails, in which case the effect is not

identifiable hence not recoverable. In the second case, Q[D;]
cannot be recovered by RC if there exists some C C
An(D; U{S}),D; C C such that every c-component of
Gc contains an ancestor of .S. We will show that there exists
an active path p’ from S to some D’ € D; in Gc. Let C; be
the c-component of Gg such that D; C C;:

o If C; N An(D;) N An(S) # 0, let C’ be any element in
that intersection. Then p’ is the directed path from C’ to
S and from C” to some D’ € D; (possibly of length 0 if
C' € D;). If the segment C/ — ... — S contains any
variable in X’ € X, then the outgoing edge of X’ exists
in gg’&ﬁ unless there is some Y/ € Y that is a descendant
of X’ through that edge

e Else (C; N An(S)) \ An(D;) has to be non-empty, let C”
be any element in that set connected with some W € C; N
An(D;) with a bidirected arrow. Such C’ and W must
exist for C; to be a c-component in G¢. Then p’ is formed
by the subpaths from C/ — --- — S (possibly of length
zeroif ¢’ = 85),C" «-——--» Wand W — --- — D', for
some D’ € D;.

Since D; € D = An(Y)g,, x there exists a directed path
from D’ to some Y’ € Y (possibly of length zero if D’ €
Y) that contains no element in X. As a consequence, we

can construct an active path p in gg;b{i( formed by p’ and the
directed path from D’ to Y. This implies (Y ) S) gyt and
XY

by Thm. 1 Px(y) is not recoverable from P(v | S=1). O

Appendix C. Proof of Theorem 3

In order to prove this statement we will leverage the proper-
ties of the c-component decomposition of Semi-Markovian
causal models. Two of such properties are given by the fol-
lowing lemma from (Tian and Pearl 2002b).

Lemma 8. Let H C 'V, and assume that H is partitioned
into c-components Hy, ..., H; in the subgraph Gy. Then we
have

(i) Q[H|] decomposes as
H| = [ QlH.]. (58)

(ii) Let a topological order of the variables in H be V},, <

- < Vi, inGu. Let HS' = {V}, ..., Vi, } be the set

of variables in H ordered before V},, (including Vy,,),

and H>" = H\H<ifom' = lk and H=" = ().

Then each Q[ il g = 1,...,1, is computable from
Q[H] and given by

QH="]
N V== Y
{i|Vn, €H;}

where each Q[H<%,i = 0,1,...,k, is given by

QIS =Y Q[H] (60)

h>i



Lemma9. Let H C VU{S} and let f(P(v|S=1)) be some
recoverable quantity such that

1y - @QH](v, 5=1)
J(P(v | 5=1) = £5 = 61)
Given P(t), T C V, let T = T \ De(V\H)g, T’ be the
set of all variables in H such that (T" 1L S | TY)g,,, and
let Ty = Ty UT, then Po\n(twn) is recovered as

)
2 sy f(P(V[S= 1))
(

P(t} 62
sy, F(P(VIS=1)) (ta)  (62)

Pv\h(tH) =

Proof.
= Pon(t' | t31) Pon(tgr) (63)

Since TY; contains no descendants of V\H we have that
(T L V\H)go

Po\n(ta)

Pon(t | t3)P(t5) (64)

Furthermore, since (S 1L T’ | TY)g,, we can add S=1 to
the conditioning part of the expression,

Pon(t' | tiy, S=1)P(t}) 65)
_ Pon(tu, S=1)

" Pty s=n" (66)
_ Zangsyra QHIV, 5=1)
2\ (sy\ry, @H](v, S=1)

QH](v,5=1)
P(S=1)
QH](v,5=1)
P(S=1)

Pon(ta) =

Pon(ta) =

P(tg) (67)

2 H\(S)\Tu

P(ty)  (68)
2\ ()\TY,

The operand in both sums is precisely the distribution

f(P(v]S=1))

> sh\ry S (P(v[S=1))

P(ty) (69
>\ sy S (P(v]S=1)) (tr) (69)

Pon(ta) =

O

Lemma 10. Ler H C V U {S}, and assume that H is par-
titioned into c-components Hy, ..., H;, Hg, where S € H,
in the subgraph Gy. If

(v | 5=ty = LAY HQ (70)

where f(P(v | S=1)) is some recoverable quantity, then,
forj=1,...,1, Q[H,] is recoverable if H; N An(H,) = 0,
that is, if H; contams no ancestors of Hy.

Proof. Let V), < --- <V}, be a topological order in Gy
such that An(H,) < H\ An(H;).Let Hg: = H\ H,, then
Q[Hg’] is given by

_P5=) iy e
Q[Hs](V,Szl)f(P( | 5=1)) (71)

QUH.] = I1giv,, eny Q[H<Y/Q[H<""1], where each fac-
tor is a function only of Pa(H <" N H,), and thus Q[H,] is a

Q[Hs'] =

function of An(H,). If H; contains no ancestor of H, then
all variables in H; are ordered after the variables in An(Hj),
then for each V3, € H;, h”>* U {V},,} contains no variables

in An(H,). Therefore,
QH™"] = f(P(v| 5=
;Q[HS (P | S=1)
_ Pl
= Ol 5=1) };f (v]|S=1)) (72)
<i—1 P(S 1) _
Q[H ] [Hg](V,S 1 h;/ﬁ f V|S_1))
(73)
and finally
Q=) _ Y JPVIS=1)
QA= 3 opaiy, f(P(v]S=1))
Since Q[H;] is given by
H<1
Q= 1 Q%IQ ]1] (75)
{ilVn, €H;}
it is recoverable. O

Theorem 3. Ler H C V U {S}, such that H is parti-
tioned into c-components Hy, ..., H;, Hs in the subgraph
Gy, where S € H,. Assume

f(Plv| =) = A=) HQ[H )

where f(P(v|S=1)) is some recoverable quantity, and
P(t) is available. Let T% = T \ De(V\H)g and T’ be
the set of all variables in H such that (T' 1L S | TY)gx
Also, let Ty = T U T and let Ry = H\ Ty Then
forj=1,...,1, Q[H ] is recoverable if H; contains no vari-
ables that are both ancestors of Hy and belong to Ry or its
children (i.e. H; N An(Hs) N Ch(Ru) = 0) in Gu.

Proof. Let Vi, < -+ < Vpy be a topological order
in Gy such that An(H,) < H '\ An( ). Let HS? =
{Vih,s---, Vn,} be the set of variables in H ordered before
Vi, (including V3,,), and H>* = H\ HS fori = 1,...,k,
and H=C = (). Recall from Lemma 8 that each Q[H;],
j=1,...,1,1is computable from Q[H] and given by

QH=']
o= 11 ar=em (76)
{ilVh, €H;}

where each Q(H=?],i = 0,1

QUE=T=) QH (77

h>i

, ..., k,1s given by

We will describe two ways to compute factors of the form
QH=/Q[H=""]



(i) For variables V},, € H; \ An(H,): Every V3, € H; \
An(H,) is ordered after the variables in An(H), then
the same reasoning in the proof for Lemma 10 follows
and Q[H=']/Q[H=""1] is given by (74).

(i) For variables Vi, € H; \ Ch(Rm): Let Vj- be the
lastest variable in H; \ Ch(Ry) according to the topo-
logical order. From (76) Q[H,] can be separated in two
parts:

QH="]
(78)

Q[H;] = Q[H; N H=*]
(i Vi, €H;\ An(H,)}

The first factor in (78) is equal to
QH,NH=]= Y Q[H] (79)
H;\H=*

Consider the graph PJ(Gu, H<* N Ty) where vari-
ables in Ry and H~* are hidden, and let Q7,[.] denote
the c-factors for that graph.

QpH=*NTu]= >  QMH  (80)
H\(H<*NTH)
= > > QH @D
TH\HS*RH
= > Panltw) (82
TH\HS*

By Lemma 9 we can recover P\, (ty) from f(P(v |
S=1)) and P(t) and by Lemma 2 in (Tian and Pearl
2002b), each c-component 71, ... T, of PJ(Gyu, TN
H=*) is recoverable from 2o\ i<+ Po\n(ta) as:

QRrIH=' N TH]
Q*H[HS"*1 N Ty

Zh>iﬁh§*ﬂTH QE[HS*QTH}

QrlTk] = (83)

{i|Vh, €T}

{ilVh,; €Tk} Z:h>i_lmhs*f_VI‘H QE[HS*QTH]

(84)

Zh>imTH Pv\h(tH)

{il Vi, €T0c} Lnziiome Pon(tar)

All variables in H; that come before Vj,, must be-
long to An(H,) \ Ch(Ry). Therefore, H; N H=* N
Ch(R) = 0, and (H; N H=*) is a c-component in
PJ(Gw, T N HS*) (no new bidirected arrow in-

coming to any node in H; N H=*). Then, there exists
T, =H;,NH <* that is recoverable.

Finally, Q[H/] given by
>i Pon(tu)
Q= I ZZ T p\h((f)
{i|Vn, €H;NAn(H,)} h>i—-1nTy 4 vi\h\tH
11 Sopsi F(P(v]S=1))
Zh>i7vhi f(P(V|S:1))
(36)

(85)

{1|Vh1€H]\An(Hg)}

Appendix D. Proof of Theorem 4 and 5
Lemma 11. The procedure RCE is sound.

Proof. P(v|S=1) decomposes according to (5) which in
turn is consistent with (70) and constitutes P in the initial
call to RCE. If G contains variables that are not ancestors of
S or E = D;, then they can be summed out without altering
the result.

We can further decompose P = f(P(v | S=1)) as

1P| 5=1) = e Tlam TTelc, o)

where Cj is the c-component of G to which S belongs, each
C; is recoverable by Thm. 3 and the product over B;s ac-
count for the remaining c-components of G. If E C C
for some C; we know from (Huang and Valtorta 2006) that
Q[E] is identifiable if and only if it is identifiable from
Q[C;] by the algorithm IDENTIFY. If no C; contains E,
we move the product over the recoverable C; to the Lh.s
and reduce the problem to recover Q[E] in Gy\¢ from
f(P(v | S=1)/TI; Q[C;]). If there is a component B; that
does not contain E, we can sum out of P, and remove from
G, the non-ancestors of B; U{S}. Then try to recover Q[B;]
with RCE, if successful; we can reduce the problem to that
of recovering Q[E] in Gy g, from f(P(v | S=1)/Q[B]).
O

Theorem 4. The procedure IDSB is sound.

Proof. Line 1 of IDSB first compute the set W of vari-
ables that are relevant for the identification of Py(y). Note
that every variable in V' \ W can be summed out of P
and removed from the graph G without compromising re-
coverability. Next, lines 2 and 3 recover a distribution over
a set T from the given distribution P(t%) using lemma 1.
Then, in line 4 it translates the problem of identifying Py (y)
to that of identifying the c-factors Qg[C1],...,Qp[Cy| as-
sociated with the c-components of PJ(Gp,D \ B) (see
Eq. 10). In line 5, for each Qg[C;] we determine whether
Qg[Cj] is equal to the c-factor Qr[C}] (in the context of
PJ(G,T)) that is possibly recoverable from P(t), accord-
ing to lemma 3. If Q g[C}] is not equal to Q g [C;] or Qr[C}]
is not identifiable from P(t) alone, IDSB tries to recover the
collection of factors Q[D;], that together give us Q g[C}] as
in Eq. 12, using RCE. O

Lemma 12. If IDSB fails to recover Py(y) from
P(v|S=1) and P(t) then at least one of the conditions of
the Generalized Adjustment Criterion fail.

Proof. First, let us determine the conditions under which
IDSB will make use of RCE to recover some Q[D;], which
is where the FAIL condition is first produced. Let C; be a
c-component of PJ(Gp, D\ B). It follows that C’; € D and

Pa’(Oj)gD = Pa’(Cj)gv\x = PG(C]) \X (88)



By definition of D = An(Y)
Gv\x, hence

Gvi\x 1S an ancestral set in

Pa(Cj)gD cD
< Pa(C;))\XCD
& (Pa(C;)\X)\ Y CD\ Y
& Pa(C;)\ (XUY)CD\Y
= (RNPa(C;))\(XUY)CD\Y
= (RN Pa(C)\ (XUY)\(D\Y) =0 (89)

Lemma 3 states that the c-factors Q g[C;] and Qr[C}] are
equal if B N Pa(C;) = RN Pa(Cj).

BﬂPa(C’j) = RﬂP(I(Cj)
& (D\Y)NRN Pa(C;) = RN Pa(C)
& (RN Pa(C))\ (D\Y) =0 (90)

Let E = Pa(C;) "R N (X UY), we want to show that
condition (90) holds if and only if if E = (). When this is
the case, (89) will imply equality (90). If E # (), then there
exists V; € Pa(C;)NRN(XUY). Itis clear that D\'Y does
not contain any variable in (XUY), therefore condition (90)
will not be satisfied.

According to this we can conclude that IDSB will invoke
RCE(D;) with D; € F; when

(D Pa(C;)NRN(XUY) = 0 and Qr[C}] is not identi-
fiable from Q g[T}]
) Pa(C;))NRN(XUY)#D

Claim 1. If Qr[C}] is not identifiable from Qg[T}] it im-
plies that C; contains an element in De(X) N An(Y)NT

Proof. Let H denote P.J(G,T). Since H¢,; and Hr, have
a single c-component, Thm. 4 in (Huang and Valtorta 2008)
implies that Q g[C}] is not identifiable from Q g[T}] only if
there exists a set N such that C; C N C T, Hn has a
single c-component and N \ C; C An(C;) -

We claim that (N \ C;) N X # (), to witness assume
this is not the case. Then, N \ Cj C An(Cj)pnx C
An(Cj)urx S An(Cj)#por- Note that Hpar has the
same or less nodes that PJ(Gp,D \ B) = PJ(Gp,(D N
T) UY) and possibly less edges. Therefore, An(C;)upr
is a subset of An(C;) in PJ(Gp,D \ B). This implies that
all elements in N \ C; are present in PJ(Gp,D \ B) the
same as Cj, hence N # C; would be a c-component of
PJ(Gp, D\ B) instead of C}, a contradiction. We conclude
that N\ C; contains some X’ € X which is an ancestor
of some variable in C;. Since all variables in N are also in
T N An(C;) € T N An(Y) the statement is proved. O

In summary when RCE(D;) is invoked by IDSB, D, be-
longs to the set F; such that one of the following holds:

(a) Cj contains an element in De(X) N An(Y)N T, or
(b) C; contains an element in Ch((XUY)NR)

In one hand, RCE may fail due to the call to IDENTIFY in
line 3. We know that Q[E] is identifiable if and only if it is
identifiable from Q[C;]. Hence, if this fails the causal effect
is not identifiable, much less recoverable. In particular no
estimable adjustment expression will be equal to the effect
either.

On the other hand, RCE could fail because it is un-
able to recover Q[E], we will show that in this case, at
least one of the conditions of GAC fails too. First note that
Cj,D; C D, equivalently, Cj, D; € An(Y)g,, x- RCE
failing to recover Q[E] = Q[D;] implies that there ex-
ists W C An(D; U{S}),D; € W, such that every c-
component Wy, ..., Wy, Wg of Gw sy contains a variable
W’ that is both an ancestor of Wg and a child of R, where
W is the c-component to which S belongs.

Claim 2. For any A € W there exists an active path q
from S to A given T ending with a bidirected edge; or the
adjustment criterion fails.

Proof. Let us prove it by induction in the length of q.

(Base case) When |g| = 0 the path is from S to .S which
is always active.

(Inductive Step) Suppose the path ¢ with |gx| = k from
S to Ay is active given T. Add a variable Ay, that is con-
nected to A, with a bidirected arrow. For Ay to be in W
it must be an ancestor of Y or S. If it is an ancestor of Y,
for the third condition of the adjustment to hold, there must
exists some variable in De(Ay) N An(Y) N T that makes
Y independent of S, and observing that variable makes Ay
an active collider. Then Ay, is connected to S with a path
qr+1 active given T and ending with a bidirected into Ay 1.
If Ag is in turn an ancestor of S, then either the directed path
between Ay, and S is open and so appending the bidirected
to Ak, completes a path gx1, or there exists De(Ar) N'T
that blocks the directed path but makes Ay an active collider
and the same conclusion follows. O

Since W’ € Ch(R), it is the case that there exists an
active path ¢ between S and W’ when T is observed. Note
that if the path happens to have some 7" € T as a collider,
not observing it opens a path from S to Y if 7* € An(Y),
or that ¢ remains open if 7% € An(S). If any descendant of
T* is observed to block any of those alternatives, then T
becomes an active collider. Therefore, the path g cannot be
blocked by observing or not variables in T.

Consider the path in gV\X that witnesses that W'/ is an
ancestor of Y’ € Y, for the Adjustment Criterion to hold
there must a variable in De(W’) N An(Y") N T that should
be used as a covariate to block the path from S to Y pass-
ing through W'. However, by observing such variable W’
becomes an active collider and ¢ can be extended to some
other variable in W. Let W’ be now that next variable, us-
ing the same reasoning we have that in order to avoid a path
from S to Y, the path g keeps extending to other variables
in W. At some point this reasoning extends to the variables
in C}, since at least some variable in C; \ D; has to share
a common ancestor in R with a variable in D; which had
been assigned to F;. When the path g reaches a variable

W* e Ch((XUY)NR)UDe(X)NAn(Y) (guaranteed by



((a)) and ((b))) that, as shown before, is also in An(Y)g, x.

we conclude that W* needs to be a covariate in ZT for the
third condition of the adjustment to hold, but this contra-
dicts with the first condition that forbids variables in a proper
causal path to be used as covariates. Therefore, there is no
set of covariates satisfying the criterion and adjustment fails.

O

Based on this result we can prove that instances that
IDSB can recover is a superset of those recoverable by the
generalized adjustment in (Correa, Tian, and Bareinboim
2018a), as the following result states.

Theorem 5. IDSB is strictly more powerful than the Gen-
eralized Adjustment Criterion for the task of recovering a
causal effect P (y) from a combination of biased distribu-
tion P(v|S=1) and unbiased distribution P(t°) in G.

Proof. From Lemma 12 we have that whenever IDSB fails
to recover the target effect, then GAC also fails to recover
the effect from the same input. This implies that IDSB sub-
sumes GAC. To show that IDSB is more general, we con-
sider the problem of recovering Px(y) from the model in
Fig. 2(b) with external data over T® = {W,}. The condi-
tions for the Generalized Adjustment Criterion are not sat-
isfied, hence there is no adjustment expression that can be
used to recover that effect. Nevertheless, IDSB recovers the
effect with a different mapping (see main paper for details
on this counter-example). O



