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Abstract

Answering the question “Why did this outcome occur?" is fundamental to the
empirical sciences and, in particular, the explainable artificial intelligence (XAI)
literature. However, there is a need for a conceptually grounded and technically
precise definition of this query, along with valid corresponding explanations. We
address this gap by developing a formal causal explanation framework from first
principles, grounding Lewis’s view that an explanation is a summary of an event’s
causal history. We formally define and justify three novel counterfactual quantities
that capture the causal history of an event: the natural total effect, the general-
ized direct effect, and counterfactual Shapley values. We introduce three formal
explanatory desiderata – causal admissibility, explanatory power, and normality –
and demonstrate that our method satisfies all desiderata, unlike any prior approach
found in the literature. Simulated experiments support our results.

1 Introduction

The challenge of explaining observed phenomena – patterns of events – has long been a central goal
of science. From Newtonian mechanics to quantum field theory, scientific explanation typically
relies on identifying underlying mechanisms that govern a system’s behavior through observations,
interventions, and mathematical modeling. A complete system of equations is considered adequate to
explain a phenomenon not merely because it enables prediction, but because it captures how different
parts of the system interact, evolve over time, and give rise to the observed behavior. Naturally, this
learning process is both challenging and ongoing – it may take centuries before we can confidently
say we truly understand a given phenomenon.

A similar challenge in explaining the behavior and decision-making of AI systems has recently
emerged. As AI plays an increasingly central role in society, there is a growing demand for intelligent
systems to explain themselves – to articulate the reasons behind their actions, describe their current
understanding of the world, and acknowledge what they do not know. This requirement is essential
for ensuring stakeholder trust in AI models, supporting end-user autonomy, providing recourse for
contesting model outputs, and improving our ability to debug these systems. An expanding body of
research under the rubric of explainable AI (XAI) seeks to meet this challenge [24].

Despite this parallel, there are fundamental obstacles in directly applying the scientific method to
AI systems. Scientific advances have traditionally focused on physical systems that do not involve
humans – or even deliberately remove them from the loop. In contrast, XAI methods often operate
in environments that are inherently social, interactive, and adaptive – yet they are typically blind to
the causal mechanisms underlying the systems in which they are embedded. Thus, the methods and
assumptions that work well in the natural sciences cannot be applied to AI systems without significant
retooling. Indeed, a proper definition of explanation itself has eluded formalization in much of the
existing literature of causality and explainable AI [31, 23, 26, 24].



We address the challenge of developing a causal explanatory framework with the intent of cap-
turing the essence of scientific explanation while accounting for the complexity of real-world AI
settings – where humans play a central role. Our first key observation is that modern causal lan-
guage provides a natural foundation for this task: both physical and AI systems can be described
using Structural Causal Models (SCMs) [30, 31]. Each SCM encodes a generative process – a
collection of causal mechanisms – and gives rise to the Pearl Causal Hierarchy (PCH), which
organizes different levels of reasoning about the system [1]. The observational level captures
what is seen in the world, factual events; the interventional level models how outcomes would
change under hypothetical actions; and the counterfactual level allows us to ask what would
have happened under different conditions, even if those conditions never occurred in this world.

Figure 1: An SCM (global explanation)
induces the PCH, which enables reason-
ing about specific events.

Despite its power, one observation is that SCMs are almost
never identifiable from data. Given only observational
data, multiple SCMs may be consistent with the observed
distribution, while yielding vastly different answers at the
interventional or counterfactual levels. This limitation
is formalized in the Causal Hierarchy Theorem (CHT)
[1, Thm. 1], which shows that data from lower levels of
the PCH underdetermine an SCM and thus our ability to
learn an explanation. And even if a complete SCM were
somehow learnable, the resulting equations are often too
intricate to serve as human-friendly explanations.

Given this high bar required from an explanation, we shift
focus from constructing global explanations (the whole
SCM) to explaining specific events, under only a partial
observability of the SCM and the corresponding PCH. To
address this, we propose a formal framework for event-
level explanation grounded in causal inference. We study
questions of the form: “Why is the outcome Y = y, given
that X = x?”, assuming event E = (X = x, Y = y)
was in fact observed. Here, Y = y is referred to as the
event explanandum, the event we aim to explain.There are
three key challenges in pursuing our goal. First, the why-
question must be formalized, which requires resolving ambiguities such as the choice of contrasts
or foil – a well-acknowledged issue in philosophy and cognitive science [18, 26]. Second, the
construction of an explanation requires attributing the variation in the explanandum to specific
variables – a process closely tied to notions of variable importance and decomposition [34, 5]. Third,
we must ask what makes an explanation good. Drawing on insights from philosophy, psychology,
cognitive science, and jurisprudence [9, 18, 4], we propose a formal set of desiderata – including
causal admissibility, explanatory power, and normality – that any explanation should satisfy.

In this paper, we address these challenges and propose a framework for generating and evaluating
explanations through a causal lens. More specifically, our contributions are as follows:

• Causal Foundations. We introduce the Natural Total Effect (NTE) and the Generalized Direct
Effect (GDE) to extend univariate total effects to multivariate interventions. We show that these
quantities capture the causal history of an event (Thms. 1 and 2). These quantities yield our
proposed explanation method: counterfactual Shapley values (L3 SVs).

• Causal-Explanation Desiderata. We formally define Explanatory Variable Attribution (EVA) and
introduce three properties it should satisfy: causal admissibility, causal explanatory power, and
causal normality. We prove that our proposed method satisfies the desiderata (Thm. 4).

Our framework contributes to the broader goal of building interpretable and trustworthy AI systems
grounded in causality. Experiments corroborate our theoretical findings. Formal proofs are provided
in App. A. Further discussion, including counterexamples to existing methods, appears in App. B.

Preliminaries. Random variables are denoted by capital letters X , and their values with correspond-
ing lowercase letters x. Sets of random variables X are bolded. The domain of a random variable X
is denoted by DX . We use the language of structural causal models (SCMs) as our basic semantic
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framework [30], following the presentation in [1]. An SCM is a tupleM := ⟨V,U,F , P (u)⟩, where
V, U are sets of endogenous (observables) and exogenous (latent) variables, respectively, F is a
set of functions fVi , one for each Vi ∈ V, where Vi ← fVi(pa(Vi),UVi) for some pa(Vi) ⊆ V
and UVi

⊆ U. P (u) is a strictly positive probability measure over U. Each SCMM is associated
with a causal diagram G [30, 1] over the node set V where Vi → Vj if Vi is an argument of fVj

,
and Vi ↔ Vj if the corresponding UVi

, UVj
are not independent. An instantiation of the exogenous

variables U = u is often called a unit. By Yx(u) we denote the potential outcome of Y when setting
X = x for the unit u, which is the solution for Y (u) to the set of equations obtained by evaluating
the unit u in the submodelMx, in which all equations associated with X are replaced by X = x.
We assume all observations are generated by a causal world [30][Def. 7.1.8], a tuple (M,u) ∈ W ,
the space of all worlds, whereM is an SCM, and u is a particular realization of exogenous U.

2 A Causal Framework for Explanations

To explain specific events, we must first formally define a why query. We distinguish why queries
from natural language why questions, which may be ambiguous, as they often fail to specify an
alternative value of Y = y′ against which the observed event Y = y is compared. In the literature,
this is known as the choice of foil [26], and can substantially affect valid answers to the question
[18]. For instance, one’s explanation in response to “Why is the GDP growth rate in the United States
is 2%?” may differ significantly when comparing to the expected 5% vs. a negative growth rate
elsewhere in the world. Therefore, for precision in our why query, we precisely specify the observed
events E = e, the event explanandum Y = y ∈ e, and explanatory variables X.
Definition 1 (Why Query). Given SCMM, a why query is a tuple (Y = y,X,E = e) ∈ W , where
W is the space of why queries. The tuple consists of the SCMM with observed variables V, observed
evidence E = e, where E ⊆ V, event explanandum Y = y implied by e, and explanatory variables
X ⊆ V \ {Y }. This tuple is denoted by Why(y|e;X), or Why(y|x) when e = x ∪ {y}. □

To answer why queries, we follow the philosophical insights of Lewis [21]: “an explanation of an
event explanandum is information about the causal history of that event.” In other words, we argue
that an explanation of an event is a summary of the causes of that event.

Under this framing, our goals are twofold. In Sec. 2.1, we aim to formalize the entire causal history
of an event explanandum. Our discussion will demonstrate that the causal history is captured by a
collection of multivariate total effects of explanatory variable subsets Z ⊆ X on event Y , and that
these effects need to be weighted by their baseline probabilities P (X = x′). Next, in Sec. 2.2, we
convert this causal history into a set of variable-specific effects that describe how each single variable
Xi ∈ Z contributes to a multivariate total effect of Z on Y , and we construct a variable attribution
method which summarizes this set of variable-specific effects.

2.1 Multivariate Total Effects

How do we capture the full causal history of an event, reflecting the set of effects of explanatory
variables X on the observed event Y = y? In traditional causal inference literature, the unit-level
total effect of changing X = x′ to X = x on Y for a particular unit U = u,

TEx′,x(y|u) = Yx(u)− Yx′(u), (1)

describes how changing X affects Y [29, 32]. Indeed, there is consensus in the literature that if there
is a non-zero unit level total effect from some x′ → X(u) = x, then X causes Y [15, 29, 9, 3].1

There are three major drawbacks of this classical approach. First, the total effect only considers the
variations of Y with respect to a singleton X , even though interventions on multiple variables at
once are sometimes necessary to determine an events causal history.2 Second, when comparing an
observed event Y = y, with a potential cause X = x, against an alternative value x′, there is a need
for a principled method to select such a baseline value x′. Third, and more challengingly, having

1For example, if a lightning strike (X = 1) ignites a forest (Y = 1), one can argue that the lightning caused
the fire because it had a non-zero total effect YX=1(u)− YX=0(u) = 1 (App. B.2).

2For example, if it rains and a sprinkler waters the grass, both rain and sprinkler are causes of the grass being
wet. However, neither has a total effect on the outcome, since changing either event alone will not affect the
outcome. (App. B.3).
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(a) Explanatory bases: natural total effects (orange arrows, NTE,
Def. 2), generalized direct effects (blue arrows, GDE, Def. 3) and
counterfactual Shapley values (tricolor arrows, L3 SVs, Def. 4) in a
setting with three explanatory variables.

(b) The NTE, averaging over effects
YX(u)(u) − YX(u′)(u) with natural
baseline u′ ∼ P (U).

Figure 2: Visual representations of counterfactual quantities developed in this work.

selected a baseline x′, the total effect does not reflect the normality or abnormality of the cause
X = x, even though this information is needed to evaluate its importance relative to other causes
[18].3 To address these challenges in capturing the causal history [21] of an event, we introduce the
natural total effect.
Definition 2 (Natural Total Effect (NTE)). The unit-level natural total effect of a set of variables
Z ⊆ X on outcome Y , transitioning from baseline unit U = u′ to actual unit U = u, is defined as

NTE(Z, Y | u′ → u) = YZ(u)(u)− YZ(u′)(u). (2)

In words, the NTE captures the effect of a set of variables Z(u) on Y (u) with respect to a baseline
Z(u′) determined by the natural value of Z under baseline unit U = u′. □

The NTE (Fig. 2a, left) differs from previous methods in two key ways, addressing the drawbacks
above. First, the NTE is a multivariate extension of the total effect, which allows one to capture
causes that require intervention on multiple variables to observe a change in the outcome. We prove
that this extension is necessary to allow the NTE to capture the causes of an event fully (App. B.5
contains the full formal statement with a proof):
Theorem 1 (Causal Necessity and Sufficiency of the NTE (informal)). Given an SCMM and why
query Why(y|x), define the explanatory basis as

B(M, w) = {NTE(Z, Y |u′ → u) : Z ⊆ X;u′,u ∈ DU;X(u) = x, Y (u) = y}, (3)

the set of all natural total effects. Then, B(M, w) is sufficient to ascertain the causes of Y . In
addition, each NTE b ∈ B(M, w) is necessary to distinguish someM from another SCMM′ that
has identical settings of B(M, w) \ {b}, but for which Y = y has a different causal history. □

Second, because baseline Z(u′) is determined by unit u′, the NTE can be used to capture the human
preference for abnormal causes in an explanation by constructing a natural baseline u′ ∼ P (U)
(Fig. 2b), which selects baseline X(u′) from its natural distribution,

NTE(Z, Y | u) = Eu′∼P (U)[YZ(u)(u)− YZ(u′)(u)]. (4)

Finally, we note that since, in practice, the value of U is unobserved, unit-level NTEs cannot be
estimated, despite their conceptual usefulness. For concreteness, we will instead work with NTEs
conditional on observed variables v, or the v-specific NTE,

NTE(Z, Y | v) = Eu∼P (U),u′∼P (U)[YZ(u)(u)− YZ(u′)(u)]. (5)

Having established that NTE fully captures an event’s causal history, we are faced with one final
challenge regarding complexity: the cardinality of the set of all v-NTEs is exponential in the number
of explanatory variables |X|. We address this issue in the next section by decomposing NTEs into
the contributions of their individual variables X ∈ Z and summarizing these contributions.

3For example, oxygen’s presence is technically a cause of a hypothetical forest fire, but the probability of the
baseline (the absence of oxygen) is so low that this cause would be considered less important to communicate
relative to other causes, such as the fact that lightning struck a tree in the forest (App. B.4).

4



2.2 Univariate Contributions to Multivariate Total Effects

To quantify the contribution of a single variable X to the effect NTE({X} ∪ Z̃, Y | u′ → u) for
some Z̃ ⊆ V, we compare the effect of {X} ∪ Z̃ on Y to the effect of Z̃ alone on Y . We call this
quantity the the generalized direct effect (GDE).
Definition 3 (Generalized Direct Effect (GDE)). The unit-level generalized direct effect of a single
variable X ∈ V on outcome Y , adjusting for Z ⊆ V \ {X,Y } and transitioning from baseline unit
U = u′ to actual unit U = u, is defined as

GDEZ(X,Y | u) = NTE({X} ∪ Z, Y | u)−NTE(Z, Y | u). (6)

Analogously, the GDE with natural baseline u′ is defined by averaging over u′ ∼ P (U), and the
v-specific GDE is defined by conditioning on v instead of u. □

In words, the GDE (Fig. 2a, middle) captures the contribution of X(u) to the effect of Z(u) on
Y (u), with respect to a baseline Z(u′) under baseline unit U = u′. Armed with this notion, we next
show how one can decompose a multivariate total effect represented by the NTE into contributions
attributable to single variables:
Theorem 2 (NTE decomposition). For any permutation π over the elements of potential cause
Z ⊆ X of Y , the following decomposition holds:

NTE(Z, Y |v) =
∑
Xi∈Z

GDEπ<i(Xi, Y |v), (7)

where π<i denotes the set of variables prior to Xi in the permutation π. □

In words, Thm. 2 shows that GDEs disentangle the contributions of each Xi ∈ Z to the multivariate
effect of Z on Y , NTE(Z, Y |v) (see Fig. 2a, left and middle). Notably, the NTE(Z, Y |v) decom-
position is shown for an arbitrary permutation of elements in Z. However, different permutations
can change the result Y in different ways, and therefore an exhaustive approach is to consider the
contribution of Xi to an NTE averaged in all possible permutations. This results in our explanation
method, the counterfactual Shapley value, which averages GDEs using Shapley weights [34].
Definition 4 (Counterfactual Shapley value (L3 SV)). Consider why query w = Why(y|x) such
that v = x ∪ {y}. Then, the counterfactual Shapley value for X ∈ X is defined as

ϕL3

X (w) = Eπ∼Unif(ΠX) [GDEπ<X (X,Y |v)] , (8)

where ΠX denotes the set of orderings on X, and π<X denotes the variables prior to X in π. □

Intuitively, counterfactual Shapley values summarize all variable-specific attributions to effects of
subsets of X on Y , as captured by the GDE.
Corollary 3 (ϕL3 decomposes NTE). L3 Shapley values decompose the NTE of all variables X on
Y as follows:

NTE(X, Y |v) =
∑
X∈X

ϕL3

X (Why(y|x)). (9)

□

This result follows from Thm. 2 and shows that our explanation method ϕL3 decomposes the NTE
and accounts for all the variations appearing in it, thus capturing the causal history of the event
explanandum while providing a parsimonious single attribution for each variable.

3 Explanatory Variable Attributions: Properties & Desiderata

Having developed a causally consistent explanation method, counterfactual Shapley values (L3 SVs),
we now compare it to existing methods in the literature. To do so, we first define a general data
structure for explanations: the explanatory variable attribution (EVA). 4

4For concreteness, we limit our discussion to variable attributions. In App. C, we discuss generalized variable
attributions, an overview of prior methods, and properties they satisfy and violate.
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Definition 5 (Explanatory Variable Attribution (EVA)). An explanatory attribution is a mapping
ϕ : Ω ×W ×X → Rn, where Ω is the set of SCMs, X is the set of explanatory variables for why
query w ∈ W, and attribution dimensionality n ∈ Z+. We denote the space of EVAs outputting
vectors in Rn as Φn. When unambiguous denote X as a subscript in ϕX(w). □

Next, we formalize properties that represent desirable features of an explanation and allow the
comparison to other methods. Finally, we will show that L3 SVs satisfy all desiderata, unlike any
prior work found in the literature. The first property, causal admissibility, follows a simple intuition:
if a variable could not possibly have a causal effect on the outcome, given our observed knowledge,
then it should be assigned a zero attribution ϕi(w) = 0. In other words, an attribution should not
incorrectly tell us that a variable is a cause of the outcome.
Property 1 (Causal Admissibility). Consider why query w = Why(y|X; e) ∈ W. Let there be an
absence of causation from Xi ∈ X to Y in consistent worlds if for all units u ∈ DU, there is no
setting z′ ∈ DX\{Xi} and x′

i ∈ DXi such that

E(u) = e ∧ Yz′,x′
i
(u) ̸= Yz′,xi

(u). (10)
In words, there is an absence of causation from Xi to Y if it is impossible to change Y by changing
Xi, under any unit consistent with the observations. Then, EVA ϕn ∈ Φ is causally admissible if for
all why queries w and variables Xi ∈ X, the absence of causation from Xi to Y in consistent worlds
implies a zero attribution ϕi(w) = 0. □

However, satisfying admissibility does not imply a complete explanation. For instance, ϕ(w) = 0
trivially satisfies admissibility, while giving no information about the causes of the event. To require
informative explanations, we introduce the property of causal explanatory power, which requires a
non-zero attribution whenever an admissible attribution might detect causation.
Property 2 (Causal explanatory power). EVA ϕ ∈ Φn satisfies strong causal explanatory power
if for every causally admissible EVA ϕ′ ∈ Φn, all why queries w ∈ W, and explanatory variable
Xi ∈ X,

ϕ′
i(w) ̸= 0 =⇒ ϕi(w) ̸= 0 (11)

ϕ satisfies weak causal explanatory power if the above criterion holds almost surely over the space of
SCMsM∈ Ω. □

In words, an admissible attribution has causal explanatory power if it is one of the most informative:
it must inform us of causation by yielding a non-zero attribution whenever any other admissible
method yields a non-zero attribution.

Finally, we formalize a property related to normality, following the work in cognitive psychology
by the Nobel Prize awardee Daniel Kahneman [18]. His primary observation is that humans tend to
prefer abnormal causes over normal ones when explaining an event: “the affective response to an
event is enhanced if its causes are abnormal [...] A cause must be an event that could easily have been
otherwise.” Intuitively, the more abnormal a positive effect of X on Y is, the higher the attribution
the variable should receive; the more abnormal a negative effect, the lower the attribution should be.5

Property 3 (Causal Normality). EVA ϕ ∈ Φn satisfies causal normality if, given why query w ∈ W
and valid corresponding SCMsM1,M2 with identical observed variables V, when some X ∈ V is
a more of an abnormal cause in the positive direction inM1 thanM2 but affects Y identically in
both SCMs, ϕX(M1, w) > ϕX(M2, w). □

Finally, we observe that L3 SVs may be viewed as an explanatory variable attribution and prove that
they satisfy all three properties.
Theorem 4 (L3 SVs satisfy desiderata). L3 SVs satisfy causal admissibility, weak causal explana-
tory power, and normality. □

4 Experiments

In this section, we evaluate counterfactual Shapley values (L3 SVs) in practice, aiming to determine
whether they provide more intuitive feature attributions than existing methods. We support the claim

5See App. C.4 for a formal definition of greater abnormal causation in the positive direction, counterexamples
illustrating violations of normality, and further discussion of normality.
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(a) Causal diagram.

(b) Real digits.

(c) Shifted digits. (d) Variable attributions for MNIST.

Figure 3: Color MNIST experiments. (a) Causal diagram. (b) Real digits. (c) Shifted digits. (d)
Comparison of L1, L2, L3 SVs on samples from the color MNIST dataset. Error bars denote bounds
from interventional data for L3 SVs; they denote estimation error for L1, L2 SVs.

that our method yields more intuitive feature attributions by comparing it to others on two vision
datasets: color MNIST [6, 28] (Sec. 4.1) and CelebA-HQ [19] (Sec. 4.2). Experimental details and
additional experiments on toy examples and on a synthetic dataset are included in App. E.6 We
compare against the methods most similar to ours in the literature, observational Shapley values
[25] and interventional Shapley values [16, 12, 17], which, from here on, will be called L1 and L2

Shapley values, respectively, given that they are related to the first and second layers of the Pearl
Causal Hierarchy.

4.1 Color MNIST

Consider a dataset of images of colored digits, inspired by [28]. There are two dimensions of variation
for each image in the dataset: the hue of the digit X , and the digit itself Y ; the causal diagram is
shown in Fig. 3a. There exists a strong correlation between the hue and the digit, as shown in samples
from the dataset Fig. 3b. Furthermore, the digit and image I are spuriously confounded: lower digits
have lower saturation, while higher digits have higher saturation, to the extent that zeros in the dataset
are entirely white.

Say Alice and Bob are training basic convolutional digit classifiers Ŷ on this dataset. Bob trains his
classifier in an entirely standard fashion and obtains Ŷ S . On the other hand, Alice is more perceptive,
and is concerned about the spurious correlation between the hue of the digit and the outcome. She
then converts her images to grayscale in a preprocessing step to make them robust to color shift before
training her convolutional classifier Ŷ R. The S and R stand for “standard” and “robust,” respectively.

Now, Alice and Bob want to compare their classifiers and plan to use explanation techniques available
in the literature. A priori, Alice expects that the robust classifier will ignore hue and considers only
the digits themselves in its prediction. In addition, she expects Bob’s standard classifier to always use
both hue and digit in its prediction, except for zero digits, which are white and therefore unaffected
by changing hues; she expects only the digit to be used when considering zero digits. For example,
on the shifted-hue digits in Fig. 3c, she would expect her classifier to perform well and Bob’s to
perform poorly. When Alice tries to use L1 Shapley values [25], a popular method in the literature,
she finds to her dismay that the classifiers’ attributions are identical, as shown on the right side of
Fig. 3d: the top and bottom plots are identical.

Using L2 Shapley values [17] (Fig. 3d, middle), she is able to distinguish her robust classifier
from Bob’s standard classifier: the attribution always yields a zero attribution to hue for her robust
classifier (bottom middle plot), and a positive attribution for Bob’s standard classifier (top middle
plot). However, she is still puzzled when she examines attributions to the zero digit for Bob’s standard
classifier, which should be zero but are not.

6We provide code at https://anonymous.4open.science/r/causal-explanation-framework/.
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Finally, Alice decides to use counterfactual Shapley values (Fig. 3d, left), which are able to correctly
assign zero to the hue variable for all robust classifier predictions (bottom left plot), distinguishing
her classifier from Bob’s (top left plot). In addition, the bounds for the zero digit always contain zero:
for Bob’s standard classifier, the attribution method correctly assigns no attribution to hue for zero
digits (top left plot). Alice decides that of the three methods she used, only L3 Shapley values behave
exactly as expected based on her intuition.

Given the experiments above, we conclude that L3 SVs are superior to L1 SVs in that they can
distinguish between ML models with different behavior. Furthermore, L3 SVs are superior to L2

SVs in that they correctly condition on the observed information, rather than averaging over all units;
in this experimental set, this behavior manifests in allowing L3 SVs to correctly identify variables
without an effect on the outcome in every setting.

4.2 CelebA-HQ

We next consider an example based on the CelebA-HQ dataset [19], including two ML engineers
called Bob and Alice. They are interested in constructing classifiers for predicting whether a person
has their mouth open (labeled M ), based on the CelebA-HQ data labeled D. After this, they wish
to use explanation techniques to see if the constructed classifiers align with the human intuition.
Bob, eager to get results quickly, constructs a classifier using a LeNet-style model [20] to predict the
label M using the dataset D, labeled I , thereby constructing a classifier M̂B . Alice, being a more
experienced engineer, is concerned about her classifier using spurious correlations. She knows that,
often, the mouth being open may be caused by the person smiling (variable S), and this information
is also captured in the image I (see causal diagram in Fig. 4). Thus, she wants to avoid her classifier
using information on smiling, and for this reason uses a pre-processing technique: she re-weighs the
data D, so as to make the variables M and S probabilistically independent. In this new reweighted
dataset, Drw, she constructs a LeNet classifier for M based on I , labeled M̂A.

M

S

I
M̂A

Figure 4: CelebA-HQ causal diagram.

After constructing their classifiers, Bob and Alice evaluate
them on a held-out part of data D, and to see what expla-
nation techniques can tell them about M̂A, M̂B . They are
interested in the why query Why(m̂|m, s),that is the expla-
nation of the classifiers M̂A, M̂B based on the variables
M,S. They start with a randomly sampled image shown in
Fig. 5a, of Ryan Gosling, who is smiling (S = 1) but has his mouth closed (M = 0), and select
L1, L2, and L3 Shapley values as the explanation techniques they willto use. They first look at Alice’s
classifier M̂A, which was trained in the setting where M,S are uncorrelated. Since S = 1,M = 0
for the given image, they realize that S had no effect on M , since smiling can only positively affect
the mouth being open, which was not the case since M = 0. Therefore, they conclude that for the
given image, S must have had no effect on M̂A, neither through the influence S → I → M̂A (due
to training setting), nor through S → M → I → M̂A (since S = 1,M = 0 implies no influence
S → M ). They then inspect the attributions for S,M by L1 and L2 Shapley values – and find, to
their surprise, that the variable S is given a strictly positive attribution by both methods (see Fig. 5a
middle and right orange bars). Given that they feel that Ryan Gosling’s closed mouth was not due to
his smile, they examine the L3 Shapley values, finding that the smiling variable S has an attribution
indistinguishable from 0, aligned with their intuition.

They then move to open up Bob’s classifier M̂B . Bob is somewhat embarrassed by the fact that he
did not construct a clever, robust classifier like Alice. They note that in his classifier, an influence
S → I → M̂B should exist, therefore expecting a positive attribution even in the setting where
S = 1,M = 0. They observe such positive attributions to S for L1, L2 Shapley values (Fig. 5a,
middle and right blue bars). However, based on their experience of being misled when looking at
M̂A, they no longer trust these – and note that L1, L2 Shapley values cannot qualitatively distinguish
M̂A, M̂B , even though these were trained in a very different way. Luckily, they once again check
L3 Shapley values, and also find a positive attribution to S, aligned with their expectation and that
allows them to distinguish the classifiers.

After being convinced that L3 Shapley values performed a better job at explaining their classifiers than
L1, L2 Shapley values on the particular instance, they wish to understand if this was a coincidence on

8



(a) (b)

Figure 5: CelebA-HQ experiments. (a) Left: Why do we predict Ryan Gosling’s mouth is closed?
Surely not because of or despite his smile. Right: L3, L2, and L1 Shapley values computed for
the Smiling variable with respect to the standard and robust classifiers. Error bars denote SEM. (b)
Shapley value sign distribution for Smiling on correctly-classified instances. Areas in which the
standard and robust classifiers are expected to differ are boxed in red. Standard and robust classifiers’
L3 distributions differ with p < 0.001.

a single sample or a broader phenomenon about the methods. For this, they compute Shapley values
on 20 samples within each of the four classes S = s,M = m and check if each estimated attribution
is positive, negative, or indistinguishable from zero, with a two-tailed z-test with a significance
of 0.05. Considering their expectation that L1 and L2 SVs are unable to qualitatively distinguish
between their classifiers, Alice and Bob first compute L1 and L2 Shapley values and observe that,
indeed, the sign distributions conditional on each class Fig. 5b, illustrate that, as expected, L1 and
L2 Shapley values are generally unable to distinguish between standard and robust classifiers in
terms of attribution sign. Next, they compare their L3 Shapley values’ behavior with respect to their
classifiers. They observe that for images with S = 0,M = 1, there is a significant (p < 0.001)
difference between the sign distributions of the smiling attribution, and they are therefore able to
distinguish their classifiers’ behavior in this way. Interestingly, for images with S = 0,M = 1 and
S = 1,M = 0, where S is expected to have no effect on the Alice’s classifier and a non-zero effect on
Bob’s classifier, standard and robust classifiers are distinguishable (p < 0.001); the attribution signs
match with their expectations (see the boxes marked in red in the figure). Ending their investigation,
they conclude that L3 Shapley values’ superior performance in comparing their classifiers was true in
general on the CelebA-HQ dataset.

Summary. Experiments support the theoretical findings of this work, namely: L3 Shapley values
provide a fine-grained variable attribution method and satisfy the desiderata grounded in the sciences.
For further experimental results, see App. E; for discussion on related literature, see App. C.2.

5 Conclusions

We introduced a precise mathematical formalization of the explanatory query and proposed the
natural total effect, generalized direct effect, and counterfactual Shapley values to summarize the
causal history of an event. We articulated explanatory desiderata grounded in key insights from
philosophy, cognitive science, and psychology – such as causal admissibility, explanatory power, and
normality – and demonstrated that our method is the first to satisfy them. Synthetic and semi-synthetic
experiments corroborate our findings. We expect this to be a first step toward a new generation of
causally grounded explanation methods, which are increasingly needed at a time when AI systems are
pervasive and only expected to grow. In terms of future research directions, one aspect that warrants
further investigation is the scalability of the methods proposed here. There is an intricate relationship
between the proposed quantity, its identifiability status, and its evaluability from observational data,
which makes this task both computationally and statistically challenging. Still, since causality is
an indispensable ingredient of any possible explanation framework, the only viable path is to delve
deeper into these challenges, which we believe we have made significant strides.
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A Proofs

Assumptions. In all theorems, we make the following assumptions regarding well-behaved SCMs:
1) P (U) is positive on its domain DU and continuous with respect to each continuous variable
U ∈ U; 2) for every v ∈ DV, there exists u ∈ DU such that V(u) = v; 3) the arguments to every
causal mechanism fi(pai,ui) can be separated into continuous and discrete parents Xc

i ,X
d
i such

that Xc
i ∪Xd

i = Pai ∪Ui, and fi(·,xd
i ) is continuous with respect to its continuous parents Xc

i for
every setting of its discrete parents xd

i ∈ DXd
i
.

A.1 NTE is necessary and sufficient to capture causal history

See Apps. B.5 and D for further discussion of the results below.
Definition 6 (Event Explanatory Basis). The event basis of SCM M with respect to query
Why(y|X; e′ → e) may be written as C(M, w) := ⟨YX∗ ,X, P (U|e′), P (U|e)⟩, where YX∗ is
the event counterfactual basis, defined as:

YX∗(u) := {Yz(u) : Z ⊆ X, z ∈ DZ}. (12)

Note that X above denotes the function X(u) := {X(u) : X ∈ X}. □

Definition 7 (Natural Total Effect (NTE) Basis). Consider SCMM, Why query w, event counter-
factual basis Y∗, and explanatory variable subset Z ⊆ X. The unit-level natural total effect of Z on
Y with respect to baseline u′ and knowledge u is defined as

NTE(Z, Y |u′ → u) = YZ(u)(u)− YZ(u′)(u). (13)

Assume that for any v ∈ DV, there is u′ ∈ DU inducing V(u′) = v. Then the NTE basis ofM for
why query w is defined as

BM,w
NTE (u) := {NTE(Z, Y |u

′ → u) : Z ⊆ X,u′ ∈ DU}. (14)

□

Lemma 1 (NTE basis equivalence). Consider SCMM and why query w. Assume that for every
setting of observed variables v ∈ DV, there exists unobserved setting u ∈ DU such that V(u) = v.
Then, the NTE basis BM,w

NTE and the value Y (u) uniquely determine and are uniquely determined by
the event counterfactual basis YX∗ . □

Proof. Consider some actual u. We will show that there is a bijective mapping from YX∗(u) to
{Y (u),BM,w

NTE (u)}. For the forward direction, we examine the definition of the NTE,

NTE(Z, Y |u′ → u) = YZ(u)(u)− YZ(u′)(u) (15)

= Y (u)− YZ(u′)(u). (16)

Since the NTE is defined using counterfactuals on Y , it is identified by the event counterfactual basis.
To prove the converse, we select u′ to induce Z(u′) = z′. Then, we can compute any counterfactual
Yz′ as

YZ(u′)(u) = Y (u)−NTE(Z, Y |u′ → u). (17)

This concludes our proof.
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Lemma 2 (NTE necessity). Consider SCMsMA,MB , described by the following functions, for
C ∈ {A,B} and n ∈ Z+, m ∈ Z≥0

FC(n,m) =



Zi = ui
Z ∀i ∈ [n]

Wj =


1[Z ̸= 0] C = A ∧ uj

W = 2 ∧ j = 1

1 C = B ∧ uj
W = 2 ∧ j = 1

Wj−1 uj
W = 2 ∧ j > 1

uW j uj
W ∈ {0, 1}

∀j ∈ [m]

Y =

{
1[Z ̸= 0 ∨Wm = 1] m > 0

1[Z ̸= 0] m = 0

(18)

and why query w = Why(Y = 1|Z = 1n,W = 1m). Every element of the NTE basis BM,w
NTE (u)

for units u ∈ DU consistent with observed events is necessary to distinguish betweenMA(n,m)
andMB(n,m) under at least one setting of n,m. □

Proof. We consider the actual world U = {UZ = 1n}. First, we note that Y A
Z=0n

(u) = 0, while
Y B
Z=0n

(u) = 1. Next, we note that for interventions that do not set Z = 0n, Y = 1 in both SCMs.
Finally, we note that if Z = 0n is in the intervention, in addition to at least one Wj ∈ W that
is the last in the chain to be intervened upon, Y = 0 if we set Wj = 0, and Y = 1 if we set
Wj = 1. Therefore, the counterfactual YZ=0n

is necessary within the event counterfactual basis
to distinguish the two SCMs, as all other counterfactuals are identical betweenMA,MB . Thus,
NTE(Z, Y |u′ → u) for all Z(u′) = 0n is necessary to distinguish the two SCMs, given that only
this NTE is a function of YZ=0n

(u), and all other counterfactuals are identical between the two
SCMs.

Theorem 5 (NTE necessity and sufficiency). Consider SCMM and why query w = Why(y|x).
Every element of the NTE basis BM,w

NTE (u) for actual units u ∈ DU consistent with observed events
is necessary to distinguish betweenMA(n,m) andMB(n,m) under at least one setting of n,m.
Furthermore, the NTE basis is sufficient to describe the causal history of Y = y contained in the
event counterfactual basis YX∗ . □

Proof. This result follows directly from Lems. 1 and 2.

A.2 NTE decomposes into GDEs and L3 SVs

Theorem 2 (NTE decomposition). For any permutation π over the elements of potential cause
Z ⊆ X of Y , the following decomposition holds:

NTE(Z, Y |v) =
∑
Xi∈Z

GDEπ<i(Xi, Y |v), (7)

where π<i denotes the set of variables prior to Xi in the permutation π. □

Proof. We prove this theorem by induction. For |Z| = 0, and any X ∈ X, we observe that

GDE∅(X,Y |u′ → u) = NTE(X,Y |u′ → u)−NTE(∅, Y |u′ → u) (19)

= NTE(X,Y |u′ → u)− (Y (u)− Y (u)) (20)

= NTE(X,Y |u′ → u). (21)

For the inductive step, we assume that for every |Z| < k < |X| and ordering π on Z,

NTE(Z, Y |u′ → u) =
∑
Xi∈Z

GDEπ<i(Xi, Y |u′ → u). (22)
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Consider subset Z′ ⊆ X with |Z′| = k > 0. Let X be the last element of Z′ according to ordering π
on Z′, and denote Z = Z′ \ {X}. Note that |Z| = k − 1, satisfying Eq. (22). Then, following Def. 3:

GDEZ(X,Y |u′ → u) = NTE(Z ∪ {X}, Y |u′ → u)−NTE(Z, Y |u′ → u) (23)

NTE(Z ∪ {X}, Y |u′ → u) = NTE(Z, Y |u′ → u) + GDEZ(X,Y |u′ → u) (24)

=
∑
Xi∈Z

GDEπ<i(Xi, Y |u′ → u) + GDEZ(X,Y |u′ → u) (25)

=
∑

Xi∈Z∪{X}

GDEπ<i(Xi, Y |u′ → u) (26)

NTE(Z′, Y |u′ → u) =
∑

Xi∈Z′

GDEπ<i(Xi, Y |u′ → u) (27)

We have proven Eq. (22) by induction. We now take the expectation over u′ ∼ P (U),u ∼ P (U|v)
on both sides to obtain

Eu′,u [NTE(Z, Y |u′ → u)] = Eu′,u

[ ∑
Xi∈Z

GDEπ<i(Xi, Y |u′ → u)

]
(28)

NTE(Z, Y |v) =
∑
Xi∈Z

GDEπ<i(Xi, Y |v) (29)

We conclude our proof.

Corollary 3 (ϕL3 decomposes NTE). L3 Shapley values decompose the NTE of all variables X on
Y as follows:

NTE(X, Y |v) =
∑
X∈X

ϕL3

X (Why(y|x)). (9)

□

Proof. This corollary follows from Thm. 2. We may write:

NTE(X, Y |v) = Eπ∼Unif(ΠX) [NTE(X, Y |v)]
∑
X∈X

ϕL3

X (w) (30)

= Eπ∼Unif(ΠX)

[∑
X∈X

GDEπ<X (X,Y |v)

]
(31)

=
∑
X∈X

Eπ∼Unif(ΠX) [GDEπ<X (X,Y |v)] (32)

=
∑
X∈X

ϕL3

X (w). (33)

We conclude our proof.

A.3 L3 SVs satisfy causal explanation properties

A.3.1 Causal Admissibility

Lemma 3 (Causal Admissibility). L3 SVs satisfy causal admissibility. □

Proof. First, we prove that causal admissibility holds for L3 SVs. If Yz,x′(u) = Yz(u) for all
variables X ∈ X and interventions Z ⊆ X \ {X}, z ∈ DZ, then it is clear that

GDEZ(X,Y |u′ → u) = YZ(u′)(u)− YZ(u′),X(u′)(u) (34)

= YZ(u′)(u)− YZ(u′)(u) (35)

= 0. (36)
This implies that the corresponding L3 Shapley values must be zero:

ϕL3

X (w) = Eπ∼Unif(ΠX) [GDEπ<X (X,Y |v)] = 0. (37)

Therefore, causal admissibility holds.
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A.3.2 Weak Causal Explanatory Power

Lemma 4 (Weak Causal Explanatory Power). L3 SVs satisfy weak causal explanatory power. □

Proof. Following the definition of weak causal explanatory power, consider causally admissible EVA
ϕ′ ∈ Φn, why query w ∈ W, and explanatory variable Xi ∈ X.

If ϕ′(w) ̸= 0, the contrapositive of causal admissibility implies there exists some u ∈ DU such that
for some z′ ∈ DX\{Xi} and x′

i ∈ DXi
,

X(u) = x ∧ Y (u) = y ∧ Yz′,x′
i
(u) ̸= Yz′,xi

(u). (38)

Let u′ ∈ DU induce Z(u′) = z′ and Xi(u
′) = x′

i. Then, by the above equation,

GDEZ(Xi, Y |u′ → u) = YZ(u′),X(u)(u)− YZ(u′)(u) ̸= 0. (39)

We have ϕL3
i (w) = 0 if and only if

Eπ,ũ′,ũ[GDEπ<X (X,Y |ũ′ → ũ)] = 0, (40)
where π ∼ Unif(ΠX), ũ′ ∼ P (U), ũ ∼ P (U|V = v). Combining the above equations, we may
rewrite our characteristic constraint as a weighted function of other GDEs.

GDEZ(Xi, Y |u′ → u) =
∑

Z̃ ⊆ X \ {Xi}

ũ, ũ
′ ∈ DU

w(Z̃, ũ′, ũ) GDEZ̃(Xi, Y |ũ′ → ũ) ̸= 0 (41)

where

w(Z̃, ũ′, ũ) :=
P (π, ũ′, ũ|(π<X , ũ′, ũ) ̸= (Z,u′,u))

P (π<X = Z)P (U = u′)P (U = u|V = v)
(42)

These weights are well-defined as long as our positivity assumptions hold. We may view the space of
SCMs as characterized by the variable-specific GDE basis,

BGDE
X (v) = {GDEZ(X,Y |u′ → u) : (Z,u′,u) ∈ I}}, (43)

for index set I = {(Z,u′,u) : Z ⊆ X \ {X},u′,u ∈ DU,V(u) = v}. Given that the basis is
isomorphic to RI , we view ϕL3

i (w) as a measurable function on the DBGDE
X

, the space of all possible
GDE settings. Using any atomless measures µi on each coordinate i ∈ I , such as the Lebesgue
measure, we construct the product measure µ : RI → R, which is also atomless by construction. We
construct the pushforward measure g := µ ◦ (ϕL3

i )−1. Due to non-atomicity, (ϕL3
i )−1({0}) has zero

measure; in other words, g({0}) = 0, and the space of SCMs where ϕL3
i (w) = 0 is measure zero.

Therefore, L3 SVs satisfy weak causal explanatory power.

A.3.3 Causal Normality

In this section, we discuss the normality property and prove that L3 Shapley values satisfy normality.
App. C.4 contains an extended discussion on the property of causal normality (Prop. 3).
Definition 8 (Comparative abnormality). X is more of an abnormal cause inM2 thanM1 in the
positive direction iff DX := DX1

= DX2
and for all u ∈ DU, E(u) = e ∧X1(u) = X2(u) implies

that for all z′ ∈ DX\{X} and all x′
1 = x′

2 ∈ DX ,

Yz′,x′
1
(u) = Yz′,x′

2
(u) (44)

∧(Yz′,x′
1
(u) < Yz′(u) =⇒ P (x′

1) ≥ P (x′
2)) (45)

∧(Yz′,x′
1
(u) ≥ Yz′(u) =⇒ P (x′

1) ≤ P (x′
2)) (46)

and there exists u ∈ DU for which there is a positive change and probability mass decreases
from M1 → M2, or for which there is a negative change and probability mass increases from
M1 →M2:

(Yz′,x′
1
(u) < Yz′(u) ∧ P (x′

1) > P (x′
2)) (47)

∨(Yz′,x′
1
(u) > Yz′(u) ∧ P (x′

1) < P (x′
2)) (48)

□
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Property 3 (Causal Normality). EVA ϕ ∈ Φn satisfies causal normality if, given why query w ∈ W
and valid corresponding SCMsM1,M2 with identical observed variables V, when some X ∈ V is
a more of an abnormal cause in the positive direction inM1 thanM2 but affects Y identically in
both SCMs, ϕX(M1, w) > ϕX(M2, w). □

Lemma 5 (Causal Normality). L3 SVs satisfy causal normality. □

Proof. Let X ∈ V be more of an abnormal cause in the positive direction inM2 thanM1. We first
observe that

GDEZ
M2

(X,Y |u′ → u) = GDEZ
M1

(X,Y |u′ → u), (49)

for all elements of the GDE basis on Why(y|x), due to Eq. (44). Without loss of generality, consider
u ∈ DU such that

Yz′,x′
1
(u) < Yz′(u) ∧ P (x′

1) > P (x′
2) (50)

Let u′ induce Z(u′) = z′, X1(u
′) = x′

1. We know that Y (u) is identical betweenM1(u),M2(u).
Therefore,

GDEZ(X,Y |u′ → u) > 0 (51)

PM1
(u′) > PM2

(u′). (52)

Following Eqs. (45) and (46), it follows that there is an increase in both probability mass and value of
GDEZ(X,Y |u′ → u). Given that the non-zero elements of the expectation

ϕL3

X (w) = Eπ,u′,u[GDEπ<X (X,Y |u′ → u)] (53)

along with their weights P (u′) have increased or remained constant fromM1 →M2, ϕL3

X (w) must
increase fromM1 →M2. Therefore, L3 SVs satisfy normality.

A.3.4 Formal Statement

Theorem 4 (L3 SVs satisfy desiderata). L3 SVs satisfy causal admissibility, weak causal explana-
tory power, and normality. □

Proof. The statement directly follows from Lems. 3, 4 and 5.

A.4 L∗
3 SVs satisfy causal explanation properties

In this section, we prove that L∗
3 Shapley values satisfy the desired properties for causal explanations.

An extended discussion of the properties is also present in App. C.5.
Definition 9 (Extended Counterfactual Shapley value (L∗

3 SV)). The extended counterfactual
Shapley value for X ∈ X is defined as

ϕ
L∗

3

X (w) = ⟨Eπ,u′,u [GDEπ<X (X,Y |v)] ,Vπ,u′,u [GDEπ<X (X,Y |v)]⟩ (54)

where π ∼ Unif(ΠX),u′ ∼ P (U),u ∼ P (U|v); ΠX denotes the set of orderings on X; and π<X

denotes the variables prior to X in π. □

Lemma 6 (Strong Causal Explanatory Power). L∗
3 SVs satisfy strong causal explanatory power. □

Proof. This proof is much less involved than that of Lem. 4. When ϕ
L∗

3

X (w) = ⟨0, 0⟩, we know that
every element of the GDE basis must be zero: if the expectation and variance of a random variable are
zero, it must be degenerate with mean zero. If an element of the GDE basis with positive probability
mass is non-zero, then ϕ

L∗
3

X (w) cannot be zero by the contrapositive of the previous statement. If an
admissible attribution ϕ′(w) ̸= 0, then there must be a non-zero GDE with positive mass, which
implies that ϕL∗

3

X (w) is non-zero. Therefore, ϕL∗
3

X (w) satisfies strong causal explanatory power.

Theorem 6 (L∗
3 SVs satisfy properties). L∗

3 SVs satisfy causal admissibility, strong causal explana-
tory power, and causal normality. □
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Proof. As shown in the proof of Lem. 3, L3 SVs satisfy admissibility because the precondition
implies that all relevant GDEs are zero. This implies that the mean and variance of the GDE also
must be zero, as captured in ϕ

L∗
3

X (w) = ⟨0, 0⟩. Therefore, causal admissibility is satisfied.

Strong causal explanatory power is satisfied, following Lem. 6.

Normality is satisfied if the > operator on ϕ
L∗

3

X (w) is defined to operate only on the first element of
the attribution, following Lem. 5.

A.5 Causal Explanation Framework

In this section, we introduce the global explanatory basis and GDE basis; we prove that the global
explanatory basis is equivalent to the SCM, while the GDE basis is equivalent to the NTE basis. An
extended discussion of these results can be found in App. D.
Definition 10 (Global Explanatory Basis for SCMs). Given SCMM, the global explanatory basis
ofM may be written as the tuple C(M) := ⟨VM

∗ , PM(U)⟩, where the global counterfactual basis
VM

∗ is defined as

VM
∗ (u) :=

⋃
V ∈VM

V M
∗ (u) (55)

V M
∗ (u) :=

{
V M
z (u) : Z ⊆ V, z ∈ DZ

}
. (56)

□

Theorem 7 (Expressivity of the global basis). For any SCMM and intervention X ⊆ V,x ∈ DX,
the global basis C(M) identifies submodelMx. □

Proof. Consider the SCM and intervention above. Given that P (U),U,V are trivially identified
by C(M), we prove this theorem by constructing Fx. Consider fVx ∈ Fx. Then we construct
fVx(paVx

,uV ) = Vx,paVx
(u) for any u ⊇ uV , where paVx

denotes the parents of Vx inMx.

Definition 11 (Generalized Direct Effect (GDE) Basis). Consider SCMM, Why query w, event
counterfactual basis Y∗, explanatory variable subset Z ⊆ X, and explanatory variable of interest
X ∈ X \ Z. The unit-level generalized direct effect of X on Y with adjustment set Z, baseline u′,
and knowledge u is defined as

GDEZ(X,Y |u′ → u) = NTE(Z ∪ {X}, Y |u′ → u)−NTE(Z, Y |u′ → u) (57)
= YZ(u′)(u)− YZ(u′),X(u′)(u). (58)

Assume that for any v ∈ DV, there is u′ ∈ DU inducing V(u′) = v. Then the GDE basis ofM for
why query w is defined as

BM,w
GDE(u) = {GDEZ(X,Y |u′ → u) : X ∈ X,Z ⊆ X \ {X},u′ ∈ DU)} (59)

□

Theorem 8 (NTE-GDE equivalence). The GDEs basis uniquely determines and is uniquely deter-
mined by the NTE basis. □

Proof. Following Thm. 2, there is a mapping from the GDE basis to the value of every NTE in
BNTE. By definition of the GDE (Def. 3), there is a mapping from the NTE basis to every GDE in
the BGDE. This concludes our proof.

A.6 Explanatory Impossibility Theorem and Soundness of Bounding

In this section, we prove the explanatory impossibility theorem. An extended discussion of this result
is present in App. E.1.
Definition 12 (Bound). Consider SCM class Ω′ ⊆ Ω, counterfactual quantity f : Ω → R, and
some a, b ∈ R. Interval [a, b] is a bound on f over SCM class Ω′ if for allM∈ Ω′,

a ≤ f(M) ≤ b. (60)
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[a, b] is the tightest bound on f over Ω′ if there is no bound [a′, b′] on f over Ω′ such that a′ > a or
b′ < b. □

Theorem 9 (Explanatory Impossibility Theorem). Consider positive observational distribution
P (V) with binary variables, Ω′, the set of all SCMsM that induce the distribution, and why query
Why(y|x), where V = X ∪ {Y }. Ω′ yields no information about any L3 Shapley value ϕL3

X for
X ∈ X. □

Proof. Without loss of generality, let X = 1, Y = 1. We show that there exists SCMM1 ∈ Ω′ with
maximal GDEZ(X,Y |u′ → u) = 1 for all Z ⊆ X and u′ ∈ DU where X(u′) ̸= X(u); the GDE

is zero, otherwise. We next show that there exists SCMM2 ∈ Ω′ with minimal GDEZ(X,Y |u′ →
u) = −1 for all ∅ ⊂ Z ⊆ X and u′ ∈ DU such that Z(u′) ̸= Z(u), X(u′) ̸= X(u); the GDE is
again zero, otherwise. As a result, the induced L3 SV ϕL3

X takes its minimum and maximum possible
values, respectively, and is not reduced from Ω; in other words, P (V) yields no information about
ϕL3

X .

We first constructM1:

F =



X = UX

Y =


0 UY = 0

1−X UY = 1

X UY = 2

1 UY = 3

(61)

P (U) =


UX ∼ P (X)

UY |UX = 0 ∼ Categorical(P (Y = 0|X = ux), P (Y = 1|X = ux), 0, 0])

UY |UX = 1 ∼ Categorical(P (Y = 0|X = ux), 0, P (Y = 1|X = ux), 0])

(62)

We confirm that
PM1(v) = PM1(x)PM1(y|x) = P (x)P (y|x) = P (v). (63)

Furthermore,
GDEZ(X,Y |u′ → u) = GDE∅(X,Y |u′ → u) = 1 (64)

because intervening on Z ⊆ X \ {X} has no effect on Y , by construction. Next, we observe
that conditional on X = 1, Y = 1, GDE∅(X,Y |u′ → u) = 1 for any u′ inducing X(u′) = 0.
Therefore, ϕL3

X (w) takes its maximal value inM1, because all of its composing GDEs take their
maximal values.

Next, we constructM2:

F =


X = UX

Y =


1 X \ {X} = 1 ∧ uY = 2

1−X X \ {X} ≠ 1 ∧ uY = 2

uY uY ∈ {0, 1}

(65)

P (U) =


UX ∼ P (X)

UY |uX = 1 ∼ Categorical([0, P (Y = 1|X = ux), P (Y = 0|X = ux)])

UY |uX ̸= 1 ∼ Categorical([P (Y = 0|X = ux), P (Y = 1|X = ux), 0])

(66)

where 1 denotes the one vector. Here, it is evident that when u′ ∈ DU induces Z(u′) ̸=
Z(u), X(u′) ̸= X(u),

GDEZ(X,Y |u′ → u) = YZ(u′)(u)− YZ(u′),X(u′)(u) (67)

= 0− 1 = −1 (68)

Given thatM1,M2 are SCMs in which the values of GDEZ(X,Y |v) are maximized and minimized,
respectively, the induced L3 SVs also take their respective maximum and minimum values; they
are not reduced from Ω. Therefore, Ω′ yields no information about any L3 Shapley value ϕL3

X for
X ∈ X.
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Table 1: Linking examples to technical results.
Example Reference Result

Forest fire Ex. 1 But-for causation and total effects (Def. 2)
Sprinkler Ex. 2 Causal explanatory power (weak, Prop. 2)
Forest fire Ex. 3 Normality Prop. 3
L1, L2 SVs Ex. 4 Admissibility (Prop. 1)
Shark attacks Ex. 5 Admissibility (Prop. 1)
Flu shot Ex. 6 Admissibility (Prop. 1)
Exam scores Ex. 7 Admissibility (Prop. 1)
Cancellation Ex. 8 Causal explanatory power (strong, Prop. 2)
Binary four-variable basis Ex. 9 Global explanatory basis Def. 10
Patient hospitalization Ex. 10 Generalized why queries (Def. 14)
Forest fire Ex. 11 Generalized why queries (Def. 14)
Forest fire Ex. 12 Event explanatory basis (Def. 6)
Interview Ex. 13 Necessity of the NTE (Lem. 2)
Variable interaction effects Ex. 14 Interpretation of the GDE (Def. 11)
Binary Markovian chain Ex. 15 Explanatory Impossibility Theorem (Thm. 9)

B Examples

B.1 Overview

Throughout this appendix, we introduce several examples aimed towards growing intuition for each
theoretical result. We summarize these examples in Table 1.

B.2 Conjunction

Example 1 (Forest fire). A lightning strike hits a tree (X1 = 1) in a rain forest, and the forest
is arid, or dry (X2 = 1). The strike sparks a forest fire (Y = 1). A possible SCM for this setting
follows:

P (U) = {U1 ∼ Bern(0.01), U2 ∼ Bern(0.5), UY ∼ Bern(0.05)} (69)

F =


X1 = U1

X2 = U2

Y = (X1 ∧X2) ∨ UY

(70)

Human intuition indicates that the lightning X1 = 1 and the forest’s aridity X2 = 1 caused the
forest fire Y = 1. Depending on its prevalence, P (U2), dryness may be a better or worse cause than
lightning: for instance, in a tropical rain forest, dryness is highly uncommon, and abnormal aridity
would be a good explanation for a forest fire. □

From the SCM, we can infer this by observing that the total effect of the lightning on the fire is
non-zero:

TE0,1(y) = YX1=1(u)− YX1=0(u) = 1− 0 = 1. (71)

Specifically, the non-zero total effect of X1 on Y implies that X1 is a but-for cause of Y .

B.3 Disjunction

While the notion of but-for causation has a strong intuitive appeal and is undoubtedly useful in a
number of cases, it actually may provide misleading answers in rather simple settings:
Example 2 (Rain & Sprinkler). It is raining outside (X1 = 1) and the sprinkler is on (X2 = 1),
and the grass is currently wet (Y = 1). The mechanism of the Y variable is given by Y ← X1 ∨X2.
For the described event, we can see that

YX1=0 = YX2=0 = Y = 1. (72)
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In words, “had it not been raining," or “had the sprinkler not been on," the grass would have still be
wet. Therefore, univariate changes to X1 or X2 cannot change the outcome Y , and but-for causation
labels neither X1 nor X2 as the cause of Y . □

This example illustrates the importance of multivariate causes: univariate causes can be insufficient
to ascertain causation.

B.4 Normality

Example 3 (Forest fire (cont.)). A lightning strike (X1 = 1), in conjunction with the presence of
oxygen in the air (X2 = 1), causes a fire (Y = 1). The SCM is defined as follows:

F :=


X1 := UL

X2 := UO

Y := X1 ∧X2

P (U) := {UL ∼ Bern(ϵ), UO ∼ Bern(1− ϵ)}

(73)

Technically, both the lightning and the oxygen are causes according to human intuition. However,
lightning seems to be much better a cause than oxygen. □

B.5 Necessity and Sufficiency of the Natural Total Effect

See App. D.3 for a formal statement of the necessity and sufficiency of the NTE (Thm. 5).

C Explanatory Variable Attributions

C.1 General Explanatory Attributions

The aim of introducing the explanatory variable attribution (EVA, Def. 5) was to compare our method
to others. However, our current notion of EVAs attribute vectors in Rn, to explanatory variables in X,
to the general explanatory attribution, which attribute vectors in Rn to arbitrary explanatory objects.
Some examples of such objects are subsets of variables [10] and causal pathways [39, 37].
Definition 13 (Explanatory Generalized Attribution). A generalized explanatory attribution is a
mapping ϕ : Ω ×W ×X → Rn, where Ω is the set of SCMs, and attribution dimensionality n is
arbitrary. □

Future work may focus on enumerating and justifying desirable properties for explanatory generalized
attributions (EGA).

As a summary of causes, an explanation is expected to be parsimonious - to contain a low enough
quantity of information that a human can parse it. In the context of EVAs, it may be formulated as a
constraint on the attribution’s dimensionality n.
Property 4 (Parsimony). An EVA ϕ :M×W×X→ Rn satisfies the parsimony property iff n is
constant. □

In words, explanation methods that attribute importance to the system’s variables are considered
parsimonious. Methods that attempt to attribute importance to subsets of the observables are not
considered parsimonious, since the number of subsets grows exponentially with the number of
variables.

C.2 Overview of prior methods

We begin by illustrating that explanatory attributions in the literature [27] fall under the umbrella of
the EVA. Prominent in this literature are the set of feature attribution methods [33, 25, 36], which
include SHAP values, a type of feature attribution method that summarizes conditional expectations
of a model prediction using the Shapley value summarization technique [34]. This set of explanations
is generally oblivious to causality in explanations and typically assumes that the event explanandum
is the output of an ML model and therefore deterministic with respect to its inputs. In contrast, some
work approaches this problem from the perspective of the literature on actual causation [10, 2, 3, 11],

21



Table 2: Literature analyzed through the desiderata.
Method(s) Admissibility Explanatory Power Normality

Integrated Gradients [36] ✓ ✗ ✗
LIME [33] ✓ ✗ ✗
SHAP, asymmetric Shapley [25, 7] ✗ ✓* ✓*
Causal Shapley values [16, 12, 17] ✗ ✓* ✓*
Actual causation explanations [10, 2, 3, 11] ✓ ✓ ✗
PN,PS, PNS ✓ ✗ ✗
L3 Shapley (this work) ✓ ✓ ✓

which studies how to logically define a cause within a formal causal model given full information and
views an explanation as a single communicated cause; however, this branch of work lacks the ability
to reason about probabilities of causation from data. A third branch attempts to approach the problem
of explanations from the SCM framework, but it lacks the ability to handle explanations resulting
from the effects of the interactions of multiple variables [29, 8]. Finally, some work attempts to
incorporate interventional reasoning [7, 12, 16, 17] into a Shapley-style summary. This branch of
work suffers from misalignment with definitions of causation; as a result, the notion of explanations as
summaries of causes is not upheld. [39, 37] consider edge- and path-specific attributions respectively;
both works assume the absence of unobserved confounders, and also do not consider connections
to existing definitions of causation. Therefore, there is a gap in the literature at the intersection of
key components of the event-specific explanation: probabilistic reasoning, actual causation, and
explanatory variable attributions. In this section, we aim to make this gap explicit.

We summarize the groupings of methods in Table 2.

C.3 Admissibility

We motivate our discussion of admissibility with a simple example.
Example 4 (Connections to prior quantities). Consider a two-variable setting with variables X,Y .
Then for the query w = Why(y|x),

ϕL1

X (w) = Ex′∼P (X)[E[Yx]− E[Yx′ ]︸ ︷︷ ︸
TEx′,x(y)

+E[Y |x]− E[Yx]︸ ︷︷ ︸
Exp-SEx(y)

− (E[Y |x′]− E[Yx′ ])︸ ︷︷ ︸
Exp-SEx′ (y)

] (74)

ϕL2

X (w) = Ex′∼P (X)[E[Yx]− E[Y ′
x]︸ ︷︷ ︸

TEx′,x(y|x′)

] (75)

ϕL3

X (w) = Ex′∼P (X)[E[Yx|x, y]− E[Yx′ |x, y]︸ ︷︷ ︸
TEx′,x(y|x,y)

] (76)

where TEx′,x(y|e) is the total effect of changing x′ → x on y, conditional on e; and Exp-SEx(y) is
the spurious effect of x on y. The differences and additions when transitioning from L1, L2 SVs to L3

are highlighted in red and green, respectively. In words, L1 SVs capture the total effect of X on Y
for all units. In particular, when X is binary with X = Y = 1, we have:

ϕL3

X (w) = P (x′)P (y′x′ |x, y)︸ ︷︷ ︸
PN(x,y)

(77)

□

The differences and additions when transitioning from L1, L2 SVs to L3 are highlighted in red and
green, respectively. We provide examples that highlight the implications of such differences.

First, an example introduced by [16] indicates that SHAP can yield non-zero feature attributions
given the absence of event causation.
Example 5 (Shark attacks). A team of business analysts is interested in improving ice cream sales.
They collect data with many variables, including X1 which corresponds to the monthly number of
shark attacks, X2 which corresponds to monthly ice cream sales, and Y , daily profit, a deterministic
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function of X2. All variables are binary, with 1 representing a high value and 0 representing a low
value. The SCMM∗ of the underlying system, unknown to the analysts, is given by:

F :=


X1 := U12

X2 := U12

Y := X2

P (U) := {P (U12 = 1) =
1

2
}

(78)

and the causal diagram is given in Fig. 9a. One month, shark attacks, ice cream sales, and ice cream
profit are each high, implying an observed event e = {X1 = 1, X2 = 1, Y = 1}. The business
analytics team is interested in explaining why profitability was high this month, corresponding to a
why query Why(y|e). □

Clearly, the fact that shark attacks are high is not a good explanation for why profitability is high. We
can observe that in this example, L1 SVs yield a non-zero attribution for shark attacks’ contribution
to ice cream sales,

ϕL1

X1
=

1

2
(E[Y |x1]− E[Y ]) +

1

2
(E[Y |x1, x2]− E[Y |x2]) =

1

4
, (79)

while L2 SVs yield a zero attribution to this contribution,

ϕL2

X1
=

1

2
(E[Yx1 ]− E[Y ]) +

1

2
(E[Yx1,x2 ]− E[Yx2 ]) = 0. (80)

However, L2 SVs do not fix the underlying issue that actual causes in settings consistent with e
are not captured. This is particularly the case when there is causation between variables X. To
illustrate this, we introduce a simple example without unobserved confounding that shows that L2

Shapley values can also fail in this setting, in addition to linear regression, LIME, SHAP, and other
L1 methods.

However, L2 SVs do not fix the underlying issue that actual causes in settings consistent with e
are not captured. This is particularly the case when there is causation between variables X. To
illustrate this, we introduce a simple example without unobserved confounding that shows that L2

Shapley values can also fail in this setting, in addition to linear regression, LIME, SHAP, and other
L1 methods.
Example 6 (Flu shot). Alice gets the flu shot (X = 1), but still gets the flu later in the year (Y = 0).
The flu shot is known to never cause the flu, and it sometimes prevents the flu. Alice is curious why
she got the flu.

A possible SCM describing the relationship between the flu shot and the flu follows:

P (X,Y0, Y1) =



P (X = 1) = 0.1

P (Y0, Y1) =


P (Y0 = 0, Y1 = 0) = 0.09

P (Y0 = 0, Y1 = 1) = 0

P (Y0 = 1, Y1 = 0) = 0.9

P (Y0 = 1, Y1 = 1) = 0.01

(81)

□

In the example above, we don’t know why Alice has the flu, but we do know that it is not due to the
flu shot. This can be observed by using the probability of necessity [29]:

PN(x, y) = P (y′x′ |x, y) =
P (y′x′ , yx, x)

P (x, y)
= 0. (82)

On the other hand, we can show that L1 and L2 SVs, which are identical due to the absence of
unobserved confounders, both assign the flu shot a negative attribution when explaining the output of
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Figure 6: A sample of 24 students from Alice’s class. For students like Alice who have high scores
and slept well (in the bottom right), reducing sleep quality would not affect their score, indicating
high quality sleep is not a cause of their high performance. On the other hand, improving sleep
quality would improve performance for some students who had low scores and slept poorly; for these
students, poor sleep quality is a cause of their poor performance.

the predictor:7

ϕL1

X = ϕL2

X = E[YX=1]− E[Y ] (83)
= P (X = 0) (E[YX=1]− E[YX=0]) = 0.9 (0.01− 0.91) = −0.81. (84)

We introduce a second counterexample to both L1 and L2 SVs, this time using a confounder.
Example 7 (Exam scores). A team of data scientists interested in academic performance is at-
tempting to understand how sleeping habits might affect test scores. They collect data where X1

corresponds to whether a student sleeps well the night before their exam, X2 whether they scores
high on the exam, and Y is a deterministic function of whether or not the student does well in class –
a mirror of whether or not they do well on the final exam. Whether the student has good study habits
is unobserved and described by the exogenous variable U . The SCMM∗ of the underlying system is
given by:

F :=


X1 := U12

X2 := 1[U2 = 4] ∨ (1[U2 ̸= 1] ∧ (X1 ∨ U12))

Y := X2

P (U) := {P (U12 = 1) =
1

2
, U2 ∼ Unif({1, 2, 3, 4})}

V := {X1 = 1, X2 = 1, Y = 1}

(85)

and the causal diagram is given in Fig. 9c. A sample set of students is given in Fig. 6. A student
called Alice sleeps well, scores high, and does well in her class, which implies an observed event
e = {X1 = 1, X2 = 1, Y = 1}. The data science team is interested in explaining why Alice did well
in this class - formally, the why query w = Why(Y = 1|X1 = 1, X2 = 1). □

What should be expected in terms of attributions to sleep quality and exam score? Visually, in the
bottom right corner in Fig. 6, there are only green units, meaning that modifying X1 would have
no effect on any of the students like Alice: it should be assigned an attribution of zero. We would
then expect the entirety of the attribution to fall to exam score and none to sleep quality. We can also
arrive at the same conclusion by examining the mechanisms F determining a student’s performance
fY (Eq. (85)): since X1 = 1, we can infer that U12 = 1, implying that X1 has no effect on X2 or Y ,
even when intervening on other observed variables. This intuition translates to the fact that for Alice,

7Given that L1 and L2 SVs are used to explain deterministic predictors f , we may introduce a function
fŶ (X,Y ) = Y as our explanation target. This does not change the valuation of the PN , and halves L1, L2

attributions but does not change the fact that they are both nonzero.
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sleeping well the night before her exam contributed nothing to her performance in the class. Rather,
it was the fact that she had good study habits, which led to her high exam score, and subsequently
resulted in strong class performance.

We may compute L1 and L2 Shapley values to see if this intuition holds for these EVAs:

ϕL1
1 (w) =

1

2
((E[Y |x1, x2]− E[Y |x2]) (86)

+ (E[Y |x1]− E[Y ]))

=
1

2
((1− 1) + (0.75− 0.5))

= 0.125.

ϕL2
1 (w) =

1

2
((E[Y |do(x1, x2)]− E[Y |do(x2)]) (87)

+ (E[Y |do(x1)]− E[Y ]))

=
1

2
((1− 1) + (0.75− 0.5))

= 0.125.

We can see that LIME, SHAP values, and interventional Shapley values all attribute a non-zero
effect to the variable X1 in this case, contrary to the desired behavior. Note that because there is
a non-zero association between X1 and Y , the attribution for LIME and for linear regression also
yield a non-zero attribution for X1, although for LIME, the exact value depends on the strength of
the ridge regression parameter.

As alluded to earlier, Lewis [22] argues that explaining an event is to provide information about
its causal history. Both kinds of methods discussed so far – linear regression and methods in the
Shapley-based attribution line of work – fail on this account. Crucially, the failure of these methods is
not a coincidence but a fundamental corollary of the Causal Hierarchy Theorem (CHT, [1, Thm. 1]),
which states that observational or interventional measures alone, in the absence of appropriate causal
assumptions, are insufficient for reasoning about counterfactual relationships between variables. The
failure of existing methods with respect to causality motivates the first formal property that allows
the assessment on whether an explanation satisfies this causal requirement.
Property 1 (Causal Admissibility). Consider why query w = Why(y|X; e) ∈ W. Let there be an
absence of causation from Xi ∈ X to Y in consistent worlds if for all units u ∈ DU, there is no
setting z′ ∈ DX\{Xi} and x′

i ∈ DXi
such that

E(u) = e ∧ Yz′,x′
i
(u) ̸= Yz′,xi

(u). (10)

In words, there is an absence of causation from Xi to Y if it is impossible to change Y by changing
Xi, under any unit consistent with the observations. Then, EVA ϕn ∈ Φ is causally admissible if for
all why queries w and variables Xi ∈ X, the absence of causation from Xi to Y in consistent worlds
implies a zero attribution ϕi(w) = 0. □

In English, causal admissibility states that, considering settings consistent with our observations
E = e, if there is no way to change Xi so that the value of Y changes under any circumstances
Z = z′, then Xi should be assigned a zero attribution.

Returning to Ex. 7, we see that there is an absence of causation from X1 to Y : there is no way to
change X1 (holding fixed any set of variables) such that Y changes, given the current setting of u.
However, we clearly see non-zero attributions for L1 and L2 SVs; therefore, L1, L2 SVs violate
admissibility.

C.4 Normality

There are two considerations when constructing a property for normality: first, what describes an
abnormal cause; and second, what implications should such abnormality have on an EVA?

We take the view that the magnitude of a causal effect should be amplified if it is more abnormal,
regardless of its sign: a more abnormal negative effect should lead to a more negative attribution, and
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a more abnormal positive effect should lead to a more positive attribution. In addition, such changes
to abnormality should only be considered, keeping all else the same. There is of course the potential
concern of effect cancellation: we address this in App. C.5. In this section, to this end, we introduce
the following definition of direction causal abnormality.
Definition 8 (Comparative abnormality). X is more of an abnormal cause inM2 thanM1 in the
positive direction iff DX := DX1

= DX2
and for all u ∈ DU, E(u) = e ∧X1(u) = X2(u) implies

that for all z′ ∈ DX\{X} and all x′
1 = x′

2 ∈ DX ,

Yz′,x′
1
(u) = Yz′,x′

2
(u) (44)

∧(Yz′,x′
1
(u) < Yz′(u) =⇒ P (x′

1) ≥ P (x′
2)) (45)

∧(Yz′,x′
1
(u) ≥ Yz′(u) =⇒ P (x′

1) ≤ P (x′
2)) (46)

and there exists u ∈ DU for which there is a positive change and probability mass decreases
from M1 → M2, or for which there is a negative change and probability mass increases from
M1 →M2:

(Yz′,x′
1
(u) < Yz′(u) ∧ P (x′

1) > P (x′
2)) (47)

∨(Yz′,x′
1
(u) > Yz′(u) ∧ P (x′

1) < P (x′
2)) (48)

□

Using this definition, we can now fully describe the causal normality property.
Property 3 (Causal Normality). EVA ϕ ∈ Φn satisfies causal normality if, given why query w ∈ W
and valid corresponding SCMsM1,M2 with identical observed variables V, when some X ∈ V is
a more of an abnormal cause in the positive direction inM1 thanM2 but affects Y identically in
both SCMs, ϕX(M1, w) > ϕX(M2, w). □

C.5 Causal Explanatory Power

In general, it is not possible to guarantee strong explanatory power when constructing an attribution
that is a weighted average of effects with potentially mixed signs.
Example 8 (Cancellation). Consider a two-variable linear SCMM with variables X1, X2, Y and
structural function

F =


X1 = u1,

X2 = γx1 + u2,

Y = αx1 + βx2 + u3,

(88)

where U1, U2, U3 are independent exogenous noise variables with zero mean. Observe that L3 SVs
for X1 are computed as

ϕL3

X1
=

1

2

(
E[Y |v]− E[YP (X1)|v]

)
+

1

2

(
E[YP (X2)|v]− E[YP (X1,X2) | v]

)
(89)

=
1

2
(α+ βγ)x1 +

1

2
αx1 (90)

=
2α+ βγ

2
x1. (91)

Specifically, when α = −βγ
2 , L3 SVs will always be zero, despite both the total and direct effects of

X1 being non-zero. This is an example of a cancellation, an instance in the measure-zero space of
SCMs where strong explanatory power is violated: there is clearly an effect, but the attribution is
zero. □

Indeed, this issue is raised as a fundamental issue of Shapley values [14]. To address this issue, we
introduce extended counterfactual Shapley values, which we refer to as L∗

3 SVs. We solve the issue
by including both expectation and variance of the GDE with respect to its dimension of variation,
rather than just the expectation.
Definition 9 (Extended Counterfactual Shapley value (L∗

3 SV)). The extended counterfactual
Shapley value for X ∈ X is defined as

ϕ
L∗

3

X (w) = ⟨Eπ,u′,u [GDEπ<X (X,Y |v)] ,Vπ,u′,u [GDEπ<X (X,Y |v)]⟩ (54)
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Figure 7: Key counterfactual quantities, illustrated under the query Why(Y |{Z,X,W}; ·). Black
nodes represent the event counterfactual basis (Def. 6). Left: The orange arrows denote the NTE basis
(Def. 7), where each arrow represents an NTE (Def. 2), a difference between two counterfactuals.
Center: The light blue arrows represent the GDE basis (Def. 11), where each arrow is a GDE (Def. 3),
expressing variable-specific contributions to potential cause Z ∪ {X}. Right: L3 Shapley values (L3

SVs, Def. 4) average GDEs, weighting each GDE with the prior probability of its baseline.

where π ∼ Unif(ΠX),u′ ∼ P (U),u ∼ P (U|v); ΠX denotes the set of orderings on X; and π<X

denotes the variables prior to X in π. □

Intuitively, the extended values will not cause violations of admissibility or normality still satisfy
admissibility. However, the extension allows the values to satisfy strong, rather than weak, causal
explanatory power.
Lemma 6 (Strong Causal Explanatory Power). L∗

3 SVs satisfy strong causal explanatory power. □

This allows us to prove a strengthened set of causal explanation properties for L∗
3 SVs.

Theorem 6 (L∗
3 SVs satisfy properties). L∗

3 SVs satisfy causal admissibility, strong causal explana-
tory power, and causal normality. □

D A Causal Framework for Explanations

In this section, we describe complete reasoning motivating the NTE, GDE, and L3 SVs as quantities
that summarize an event’s causal history. We first introduce the global explanatory basis, an equivalent
representation of the SCM that replaces functions with unit-level counterfactuals. Because we are in-
terested in explaining specific events, or outcomes, we introduce the Why query, a technically precise
formulation of the natural language why question, and demonstrate how the global explanatory basis
can be reduced to the event explanatory basis, a set of counterfactual and probabilistic information
we argue is sufficient to answer Why queries. We transform this information into the set of natural
total effects (NTE) to describe how any set of variables affects the outcome, and we show the NTE
basis - the set of NTEs - is informationally equivalent to the event counterfactual basis. To describe a
single variable’s contribution to any NTE, we introduce the generalized direct effect GDE. Finally,
we introduce L3 Shapley values and extend them to satisfy all properties (Props. 1 to 3), including
strong explanatory power.

D.1 Global explanatory basis

We begin our discussion with an example introducing our basic data structure for reasoning. It
illustrates a new way to represent SCMs using a mapping from SCM to unit-level counterfactuals
that it induces.
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Example 9 (Binary four-variable SCM basis). Consider a four-variable SCMM with topologically
ordered binary variables V = {Z,X,W, Y } with mechanisms

F = {fZ(UZ), fX(Z,UX), fW (Z,X,UW ), fY (Z,X,UY ) (92)

and exogenous variable distribution P (U) = P (UZ , UX , UW , UY ). Under any full specification
of u = {uZ , uX , uW , uY }, we can evaluate settings of the SCM’s counterfactuals. For instance, if
u = {UZ = 1, UX = 1, UW = 1, UY = 1}, the SCM induces unit counterfactuals

Z(u), X(u),W (u), Y (u). (93)

It also induces unit counterfactuals in all interventional submodels Mz for z ⊆ {z′, x′, w′, y′}
for any binary settings z′, x′, w′, y′. For example, for the variable Y , the SCM would induce the
counterfactuals

Y∗ := {Y, Yz′ , Yx′ , Yw′ , Yz′x′ , Yz′w′ , Yw′x′ , Yz′w′x′ , Yy′ , Yy′,z′ , . . . }. (94)

More generally, we view the full set of counterfactuals as the union of all individual sets,

V∗ := Z∗ ∪X∗ ∪W∗ ∪ Y∗ (95)

We will call this set of counterfactuals the global counterfactual basis. We can also reverse this
mapping, identifying each function’s behavior using the settings of its counterfactuals. For example
to identify functional behavior in the interventional submodelMX=1, we can use our topological
ordering to identify our functions as:

fZX=1
(u) = Z(u) (96)

fXX=1
(u) = 1 (97)

fWX=1
(z,u) = WZ=z,X=1(u) (98)

fYX=1
(z, w,u) = YZ=z,X=1,W=w(u) (99)

□

The intuition of representing an SCM with its counterfactuals generalizes to arbitrary numbers of
variables with arbitrary domains.
Definition 10 (Global Explanatory Basis for SCMs). Given SCMM, the global explanatory basis
ofM may be written as the tuple C(M) := ⟨VM

∗ , PM(U)⟩, where the global counterfactual basis
VM

∗ is defined as

VM
∗ (u) :=

⋃
V ∈VM

V M
∗ (u) (55)

V M
∗ (u) :=

{
V M
z (u) : Z ⊆ V, z ∈ DZ

}
. (56)

□

We excludeM when clear from context. Intuitively, the information in the basis is equivalent to all
information that can be derived from the SCM and interventions upon the SCM. We formalize this
intuition below.
Theorem 7 (Expressivity of the global basis). For any SCMM and intervention X ⊆ V,x ∈ DX,
the global basis C(M) identifies submodelMx. □

In the remainder of this section, we use the global basis as our starting point to ground our quantities
measuring causal effects.

D.2 The Why query

To explain specific events, we must first define the why query. A precise formalization is necessary:
in the absence of contextual information, “why" questions in natural language suffer from ambiguity
in terms of the information requested [18]. For instance, even “Why?" alone can be a valid question
and requests different information depending on context. For precision, we will refer to a natural
language why question as a “why question" and to the precise, formal object representing a why
question as a “Why query."
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We discuss what information we need to formally represent why questions, such as “Why did the
event Y = y occur?" Our first step is to include the observed events E = e, as well as the event
explanandum Y = y ∈ e, in the Why query. Explicitly specifying the explanandum Y = y prevents
the ambiguity inherent in questions such as “Why?" regarding what is being explained. Doing so also
specifies possible event foils Y = y′ ̸= y, which may also be ambiguous in why question.8

We assume that the underlying model that generates E = e is an unobserved SCMM [30] with
endogenous variables V ⊇ E, and we precisely specify explanatory variables X ⊆ V \{Y }, which
we use to explain our event explanandum.9

Finally, an explanation is a transfer of information from one agent with evidence about the world
(M,E = e) to an agent with potentially different evidence about the world E′ = e′ [10].
Example 10 (Patient hospitalization). A patient has asthma (X1 = 1), performs a challenging
cardio workout (X2 = 1), and is hospitalized (Y = 1) as a result. The patient’s doctor knows that
the patient has asthma and that they were hospitalized e1 = {x1, y}, while the patient’s gym partner
knows only they performed the workout and were hospitalized e2 = {x2, y}. Both are interested in
the question: “Why was the patient hospitalized (Y = 1)?". □

In the example above, the best explanation to the doctor would be the fact that the patient performed
a challenging workout, given that this information was not known. On the other hand, the best
explanation to the patient’s gym partner would be the fact that the patient had asthma.

Thus, the knowledge of the explainee is an essential factor in constructing an explanation and
determines the distribution over explanatory variable baselines - alternate settings for U, which
determine alternate, interventional values of X.
Definition 14 (Why Query (general)). Given SCMM, a why query is a tuple (Y = y,X,E =
e,E′ = e′) ∈ W , the space of why queries. The tuple consists of the underlying SCM M with
observed variables V, observed evidence E = e, where E ⊆ V, event explanandum Y = y implied
by e, explanatory variables X ⊆ V \ {Y }, and the prior evidence of the explainee E′ = e′ for
E′ ⊆ V.

We denote this tuple Why(y|e′ → e;X). □

In this work, we primarily consider cases where the set of evidence E contains settings for all
endogenous variables V, and the explainee has no prior knowledge; that, is V = E = X ∪ {Y } and
E′ = ∅. If only one of the two is specified, assume E′ = ∅. For concision, when the SCMM is
unambiguous, we denote the why query as Why(y|x).
We provide further examples of natural language why questions to Why queries below.
Example 11 (Bivariate forest fire). A lightning strike hits a tree (X1 = 1) in a rainforest. The tree
is dry (X2 = 1). The strike sparks a forest fire (Y = 1). A possible SCM for this setting follows:

P (U) = {U1 ∼ Bern(0.01), U1 ∼ Bern(0.5), UY ∼ Bern(0.05)} (100)

F =


X1 = U1

X2 = U2

Y = (X1 ∧X2) ∨ UY

(101)

A common Why query in this setting may be Why(y|x1, x2), which translates to the English request
“Given that lightning struck and the tree was dry, why did the tree catch fire? Explain your answer
in terms of the lightning strike and the tree’s dryness.” In this case, the English answer “Because
lightning struck and the tree was dry” may be a valid answer to this query.

There are many dimensions of variation of the Why query.

First, we may be interested in restricting or changing the explanatory variables. For instance,
Why(y|{X1}; e′ → e) would be a valid query, requesting explanation only in terms of the lighting

8A classic example, reproduced in [26], is the question “Why is the door open?" This question does not
clearly specify a foil and could take many contextually dependent meanings, including “Why is the door open
rather than closed?" or “Why is the door open rather than the window?"

9The distinction between an explanatory variable X ∈ X ⊆ V and an observed variable E ∈ E ⊆ V is that
while both variables can be observed and intervened upon, only variables in E are actually observed, while only
variables in X are intervened upon to construct explanations.
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strike. In this case, “Because of the lightning strike." might be a valid answer. Similarly, “Because
of the tree’s dryness” may be a valid answer to Why(y|{X2}; e). A good deal of the challenge of
answering an English why question lies in determining an appropriate set of explanatory variables
[18]; for a technically precise Why query, we require this set to be specified.

We may also vary the event explanandum. For instance, we could ask Why(X1|{X2, Y }; e) - “Why
did the lightning strike?" In this case, we would not have enough information to answer the question.
A good explanation would indicate that neither the tree’s dryness nor the forest fire caused the
lightning strike, and that we do not know why the lightning struck.

A third dimension of variation is the set of events e observed by the explainer. We could similarly
ask Why(y|{X1, X2}): “Without prior knowledge, why did the tree catch fire?” In this case, “With
a small chance, because lightning struck. Other reasons not in the explanatory variable set (e.g.,
a campfire ran over, vegetation spontaneously combusted) are also likely.” would be a reasonable
answer.

The final dimension of variation is the set of events e′ known by the explainee. Say the explainee
already knew that the lightning strike had occurred: Why(y|{X1, X2}; e′ = {x1} → e). A good
answer to the same why question, “Why did the tree catch fire?” would likely prioritize dryness in the
explanation. Conversely, if the explainee knew only that the tree was dry (Why(y|{X1, X2}; e′ =
{x2} → e)), a good explanation would likely prioritize the novel information of the lightning
strike. □

The example above touches upon each of the dimensions of variation of the Why query, given an
SCM. In this work, we primarily focus on cases where the set of evidence E contains settings for
all endogenous variables V, and the explainee has no prior knowledge; that, is V = E = X ∪ {Y }
and E′ = ∅. Thus, for concision, when the SCMM is unambiguous, we denote the why query as
Why(y|x).
Given a Why query, we aim to select only information in the global explanatory basis C(M) necessary
to answer the query.
Example 12 (Bivariate forest fire (cont.)). Consider the forest fire example. Let observations
e = {X1 = 1, X2 = 1, Y = 1}, and consider the why query w = Why(y|x1, x2). We construct a
minimal set of information from the global explanatory basis C(M) sufficient to infer the causes of y.
The effects of the explanatory variables x1, x2 on Y may be written as what we will call the event
counterfactual basis YX∗(u), the set of variables

{Y (u), Yx′
1
(u), Yx1(u), Yx′

2
(u), Yx2(u), Yx′

1,x
′
2
(u), Yx′

1,x2
(u), Yx1,x′

2
(u), Yx1,x2(u)}. (102)

There are two settings of U consistent with observations e: u1 = {u1, u2, uY }, and u2 =
{u1, u2, u

′
Y }. Under each of these settings, we have

YX∗(u1) = {y, yx′
1
, yx1

, yx′
2
, yx2

, yx′
1,x

′
2
, yx′

1,x2
, yx1,x′

2
, yx1,x2

}. (103)

YX∗(u2) = {y, y′x′
1
, yx1

, y′x′
2
, yx2

, y′x′
1,x

′
2
, y′x′

1,x2
, y′x1,x′

2
, yx1,x2

}. (104)

From Eqs. (103) and (104), we can construct quantities that align with human intuition for causes
of y. For instance, given that no change to elements of X can induce a change in Y in u1, we can
conclude that in this world, neither x1, x2 are causes of y. On the contrary, given that that setting
X1 = x′

1 changes Y (u2) = 1 to Yx′
1
(u2) = 0, or more concisely,

Y (u2)− Yx′
1
(u2) ̸= 0, (105)

we can infer x1 is a cause of y in the world induced by u2. Similarly, given that

Y (u2)− Yx′
2
(u2) ̸= 0, (106)

we can infer that x2 is a cause of y in the world induced by u2. Since Y does not change upon
intervention in u1, we can infer that in this world there are no causes of Y among the explanatory
variables.

The prior probability distribution P (U|e) is necessary to determine the probability and degree to
which each explanatory variable causes the outcome. Specifically, we know that P (U|e) assigns
non-zero probability mass to only u1,u2, with P (u1|e) = 0.05 and P (u2|e) = 0.95. We can
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conclude that there is a P (u2|e) = 0.95 probability that each of x1, x2 is a cause of y, given that
neither is a cause under u1 and both are causes under u2.

Next, we require knowledge of the settings of explanatory variables X(u) under each setting of u
consistent with e′, the knowledge of the explainee. In this case, since e′ = ∅, we have the set of
counterfactuals:

X(u′) = {X1 = U1, X2 = U2}, (107)
where each u′ ∼ P (U|e′). From this information, we can infer that the probability of lightning
not striking P (X(u′) = x′

1) = 0.99, and the probability of a tree in the rainforest being wet
P (x′

2) = 0.5. From this information, we see an asymmetry between x1, x2 that means that the
lightning strike x1 is a more abnormal cause and therefore better suited for an explanation. □

We argue that the four pieces of information ⟨YX∗ ,X(u), P (U|e′), P (U|e)⟩ are sufficient to answer
all Why queries insofar as they can be answered from an SCM; specifically, we argue that they are
sufficient to capture the causal history [21] of the event explanandum Y = y. We term this subset
of information the event explanatory basis ofM for why query w, and provide a general definition
below.
Definition 6 (Event Explanatory Basis). The event basis of SCM M with respect to query
Why(y|X; e′ → e) may be written as C(M, w) := ⟨YX∗ ,X, P (U|e′), P (U|e)⟩, where YX∗ is
the event counterfactual basis, defined as:

YX∗(u) := {Yz(u) : Z ⊆ X, z ∈ DZ}. (12)
Note that X above denotes the function X(u) := {X(u) : X ∈ X}. □

We argue that the event explanatory basis contains all of the information we need from the SCM
to answer our Why query: the counterfactuals of Y , observational settings of X, and conditional
distributions of the exogenous variable given the observations of the explainer e and explainee e′.

D.3 Multivariate causes

Equipped with the Why query and the event counterfactual basis, we return to our core argument
that an explanation of an event is a summary of its causes. We revisit important aspects of each cause
of the event: whether or not it is present, the magnitude of the causal effect, and the likelihood of the
cause.

We showed briefly in Ex. 1 how to use differences in elements of the event counterfactual basis
to infer causation in specific worlds (M,u). We generalize this notion of differencing effects by
introducing the natural total effect (NTE) of a set of variables on the outcome. Intuitively, the NTE
is the effect of changing variables Z on Y , setting them to their values Z(u′) in world u′ rather
than their actual values Z(u). Using the NTE, we can construct the NTE basis, which we show is
equivalent to the event counterfactual basis, given an observed value of Y (u).
Definition 7 (Natural Total Effect (NTE) Basis). Consider SCMM, Why query w, event counter-
factual basis Y∗, and explanatory variable subset Z ⊆ X. The unit-level natural total effect of Z on
Y with respect to baseline u′ and knowledge u is defined as

NTE(Z, Y |u′ → u) = YZ(u)(u)− YZ(u′)(u). (13)

Assume that for any v ∈ DV, there is u′ ∈ DU inducing V(u′) = v. Then the NTE basis ofM for
why query w is defined as

BM,w
NTE (u) := {NTE(Z, Y |u

′ → u) : Z ⊆ X,u′ ∈ DU}. (14)
□

Fig. 7, left, illustrates the NTE basis in a simple setting with |X| = 3. We first illustrate that the
NTE basis is informationally equivalent to the event counterfactual basis, assuming the actual value
of the event explanandum Y (u) is known: we do not lose information by transitioning to the NTE
basis.
Lemma 1 (NTE basis equivalence). Consider SCMM and why query w. Assume that for every
setting of observed variables v ∈ DV, there exists unobserved setting u ∈ DU such that V(u) = v.
Then, the NTE basis BM,w

NTE and the value Y (u) uniquely determine and are uniquely determined by
the event counterfactual basis YX∗ . □
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Figure 8: Interview graphs for companies A (left) and B (right).

We show that every NTE is necessary for the purpose of inferring causation in the example below by
showing that each NTE is needed to distinguish between two causal worlds (M1,u1) and (M2,u2)
where our perception of the causes of event Y differ. The causal graph for the example below is
shown in Fig. 8.
Example 13 (Interview). Alice is searching for a job at companies A and B. At each company,
there are n > 0 senior managers (Z1:n) and m ≥ 0 stages in the interview process (W1:m). Alice
will receive a job offer from a company if any manager refers her (Zi = 1 for any i ∈ [n]) or if she
passes her final stage interview (Wm = 1) with the company, assuming m > 0.

In actuality, Alice is an exceptional candidate, and at both companies A and B, all senior managers
refer her for the job (Z = 1n), and she passes all interview stages (W = 1m). As a result, she
receives job offers from both companies (Y = 1).

However, the companies differ slightly in their interview procedures. At company A, a senior manager
referral is needed for Alice to pass her first interview (W1 = 1). On the other hand, at company
B, Alice applies to the company separately from her referrals and passes her first interview. The
functions corresponding to the SCMs for each company,MA,MB are shown below. We consider
the actual setting u = {UZ = 1n,UW = 2 · 1m}. Note that the functions are parameterized by
company C ∈ {A,B}, and functional differences between the companies are shown in red and green,
respectively.

FC(n,m) =



Zi = ui
Z ∀i ∈ [n]

Wj =


1[Z ̸= 0] C = A ∧ uj

W = 2 ∧ j = 1

1 C = B ∧ uj
W = 2 ∧ j = 1

Wj−1 uj
W = 2 ∧ j > 1

uW j uj
W ∈ {0, 1}

∀j ∈ [m]

Y =

{
1[Z ̸= 0 ∨Wm = 1] m > 0

1[Z ̸= 0] m = 0

(108)

We argue that the causes (and therefore causal histories) of Y at companies A and B are substantively
different. Specifically, at company A, only Alice’s n referrals are causes of her job offer; the interview
process wouldn’t have occurred without them. On the other hand, at company B, Alice’s n referrals
are also causes of her job offer, but every step of the interview process is also a cause of her job offer,
given that she interviewed independently from receiving referrals. □

We generalize the intuition explored in Ex. 13 to all NTEs, illustrating that every NTE is necessary
to distinguishMA fromMB , where our assessments of causation differ.
Lemma 2 (NTE necessity). Consider SCMsMA,MB , described by the following functions, for
C ∈ {A,B} and n ∈ Z+, m ∈ Z≥0

FC(n,m) =



Zi = ui
Z ∀i ∈ [n]

Wj =


1[Z ̸= 0] C = A ∧ uj

W = 2 ∧ j = 1

1 C = B ∧ uj
W = 2 ∧ j = 1

Wj−1 uj
W = 2 ∧ j > 1

uW j uj
W ∈ {0, 1}

∀j ∈ [m]

Y =

{
1[Z ̸= 0 ∨Wm = 1] m > 0

1[Z ̸= 0] m = 0

(18)
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and why query w = Why(Y = 1|Z = 1n,W = 1m). Every element of the NTE basis BM,w
NTE (u)

for units u ∈ DU consistent with observed events is necessary to distinguish betweenMA(n,m)
andMB(n,m) under at least one setting of n,m. □

For clarity, our argument following Lem. 2 is not that every NTE is necessary to distinguish every
SCM from at least one SCM in the set of SCMs for which human evaluations of causation differs.
Rather, we argue that every NTE is necessary to distinguish at least two SCMs in which human
evaluations of causation differ:MA andMB.

This leads us to our formal statement of the necessity and sufficiency of the NTE.
Theorem 5 (NTE necessity and sufficiency). Consider SCMM and why query w = Why(y|x).
Every element of the NTE basis BM,w

NTE (u) for actual units u ∈ DU consistent with observed events
is necessary to distinguish betweenMA(n,m) andMB(n,m) under at least one setting of n,m.
Furthermore, the NTE basis is sufficient to describe the causal history of Y = y contained in the
event counterfactual basis YX∗ . □

In this subsection, we have introduced the NTE and NTE basis to describe the effects of any subset
of explanatory variables on the outcome. We have shown that the NTE basis preserves all information
in the event counterfactual basis given the event explanandum Y (u) and, furthermore, that every
single NTE in the basis is necessary to infer causation in at least one SCM.

D.4 Generalized direct effects

Although the NTE basis is conceptually useful for ascertaining causation, it is exponential in size
with respect to the number of input variables. Thus, we turn our attention towards the concept of a
variable-specific contribution to an NTE. We motivate our definition with an example.
Example 14 (Variable interaction effects). Consider the following world.

U = {UZ = 0, UX = 0, UW = 0} (109)

F =

{
V := UV ,∀V ∈ {Z,X,W}
Y := αZ + βX + γW − δXW

(110)

Consider u′ = {U = −1 : U ∈ U}. We first note a general formula for the NTE, where
Z ⊆ {Z,X,W}

NTE(Z, Y |u′ → u) = α1[Z ∈ Z] + β1[X ∈ Z] + γ1[W ∈ Z] + δ1[{X,W} ⊆ Z] (111)

Below, we compute the four NTEs containing X and the four excluding X:

NTE({X}, Y |·) = β NTE({}, Y |·) = 0 (112)
NTE({X,Z}, Y |·) = α+ β NTE({Z}, Y |·) = α (113)
NTE({X,W}, Y |·) = β + γ + δ NTE({W}, Y |·) = γ (114)

NTE({X,Z,W}, Y |·) = α+ β + γ + δ NTE({Z,W}, Y |·) = α+ γ (115)

Lems. 1 and 2 suggest it would be incorrect to take only NTE(X,Y |u′ → u) = β to represent the
full effect of X on Y . This is confirmed upon examination by the fact that δ affects how X affects Y
differs from its expectation but is not included in the expression. Therefore, we consider the set of
all NTEs and aim to determine the contribution of X to each of the four NTEs containing it in the
left column; to do so, we compute the difference between each NTE and the corresponding NTE
excluding X . We call this difference the generalized direct effect (GDE) of X on Y with respect to
some subset Z.

GDEZ=∅(X,Y |·) = NTE({X}, Y |·)−NTE({}, Y |·) = β (116)

GDEZ={Z}(X,Y |·) = NTE({X,Z}, Y |·)−NTE({Z}, Y |·) = β (117)

GDEZ={W}(X,Y |·) = NTE({X,W}, Y |·)−NTE({W}, Y |·) = β + δ (118)

GDEZ={Z,W}(X,Y |·) = NTE({X,Z,W}, Y |·)−NTE({Z,W}, Y |·) = β + δ (119)

We observe that in cases when W ∈ Z, the GDE captures interaction effects between X and W .
This supports our claim that each GDEZ(X,Y |·) captures the contribution of X to the effect of the
corresponding subset containing it Z ∪ {X} on Y , NTE(Z ∪ {X}, Y ·). □
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We formally define the generalized direct effect (GDE) below.
Definition 11 (Generalized Direct Effect (GDE) Basis). Consider SCMM, Why query w, event
counterfactual basis Y∗, explanatory variable subset Z ⊆ X, and explanatory variable of interest
X ∈ X \ Z. The unit-level generalized direct effect of X on Y with adjustment set Z, baseline u′,
and knowledge u is defined as

GDEZ(X,Y |u′ → u) = NTE(Z ∪ {X}, Y |u′ → u)−NTE(Z, Y |u′ → u) (57)
= YZ(u′)(u)− YZ(u′),X(u′)(u). (58)

Assume that for any v ∈ DV, there is u′ ∈ DU inducing V(u′) = v. Then the GDE basis ofM for
why query w is defined as

BM,w
GDE(u) = {GDEZ(X,Y |u′ → u) : X ∈ X,Z ⊆ X \ {X},u′ ∈ DU)} (59)

□

Fig. 7, center, illustrates the GDE basis in a simple setting with |X| = 3. Highlighted in red
(Z), green (X), and dark blue (W ), respectively, are the GDEs expressing the contribution of the
corresponding variable to each NTE whose subset contains that value.

We next observe that the NTE of all variables on the outcome may be decomposed into GDEs. In this
way, we clearly illustrate that the set of GDEs captures all variation in the set of NTEs. Revisiting
Ex. 14, consider the ordering {Z,X,W}; we show that the following equality holds:

NTE({Z,X, Y }, Y |u→ u′) = (α) + (β) + (γ + δ) (120)

= GDE(Z, Y |u→ u′) + GDE(Z, Y |u→ u′) + GDE(Z, Y |u→ u′)
(121)

Following the intuition that variable-specific GDEs decompose the NTE, we prove that the GDE
preserves all information contained in the set of NTEs; in other words, no information is lost when
transitioning to this variable-specific representation of causal effects on Y . To this end, we first
note that, following Thm. 2, the NTE can be decomposed into a sum of GDEs. This leads to the
implication that the NTE and GDE bases are equivalent.
Theorem 8 (NTE-GDE equivalence). The GDEs basis uniquely determines and is uniquely deter-
mined by the NTE basis. □

In this section, we have introduced the global explanatory basis, the technical Why query and its
corresponding event explanatory basis, and the counterfactual NTE and GDE queries as tools to
ascertain the causes of an event explanandum. We have argued via Thm. 8 that the sets are both
necessary and sufficient to infer causation from the underlying SCM.

E Experiments

E.1 Methodology

In this section, we prove the Explanatory Impossibility Theorem (Thm. 9): we prove that substantial
causal assumptions are needed to infer L3 SVs from data. Following this motivation, we introduce
Alg. 1 to bound L3 SVs from data and assumptions in the form of a causal diagram.

E.1.1 Explanatory Impossibility Theorem

To understand the inherent impossibility of uniquely inferring counterfactual quantities from data, we
first define the notion of a bound on a counterfactual quantity, following [38].
Definition 12 (Bound). Consider SCM class Ω′ ⊆ Ω, counterfactual quantity f : Ω → R, and
some a, b ∈ R. Interval [a, b] is a bound on f over SCM class Ω′ if for allM∈ Ω′,

a ≤ f(M) ≤ b. (60)

[a, b] is the tightest bound on f over Ω′ if there is no bound [a′, b′] on f over Ω′ such that a′ > a or
b′ < b. □
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We may state that Ω′ yields no information about f if the tightest bound [a, b] over Ω′ on f is also
the tightest bound over Ω on f . In this case, the information that Ω′ contains the true SCM does not
inform the set of possible values of f . In general, substantive causal information is needed in order to
construct valid explanations, as shown below.

Counterfactual Shapley values are quite similar to the probability of necessity [29] in terms of
identification and bounding. Indeed, when variables X,Y are binary and observed to be equal to 1 in
context E = e, we have:

NTE(X,Y |e) = E[Y |e]− E[YP (X)|e] (122)

= 1− (P (x)P (y|e) + P (x′)P (yx′ |e)) (123)

= P (x′)PN(x, y|e). (124)

This implies that in certain binary settings, we may use existing bounds on the PN [38] to bound
counterfactual Shapley values. Particularly, when Markovianity holds, we have:

max

(
0, 1− P (yx′)

P (yx)

)
≤ PN(x, y) ≤ min

(
1,

P (y′x′)

P (yx)

)
. (125)

Below, we illustrate an application of these bounds.
Example 15 (Two-variable binary Markovian chain). Consider a binary Markovian SCM with
observed variables {X1, X2, Y } with an observational distribution factorizing as:

P (v) = P (x1)P (x2|x1)1[y = x2]. (126)

We cannot infer any bounds on ϕL3 when the assumption of Markovianity is removed [38]. With the
additional information that the SCM is Markovian, we know that ϕL1

1 = ϕL2
1 . In addition, we may

apply the bounds derived in Eq. (125), observing that:

ϕL1
1 = ϕL2

1 = P (x′
1)(P (yx1

)− P (yx′
1
)) (127)

≤ P (x′
1)max

(
0, 1− P (yx′)

P (yx)

)
(128)

≤ ϕL3
1 , (129)

for all choices of P (yx), P (yx′), with equality holding when P (yx) = 1 or P (yx) = P (yx′).

As a simple illustration, consider the following two SCMs where V = {X1 = 1, X2 = 1, Y = 1}:

M1 =


U1, U2 ∼ Bern(0.5)

X1 = U1

X2 = X1 ⊕ U2

Y = X2

(130)

M2 =


U1, U2 ∼ Bern(0.5)

X1 = U1

X2 = U2

Y = X2

(131)

We may observe that P (yx1) = P (yx′
1
) = 0.5 in both SCMs, implying that ϕL1

1 = ϕL2
1 = 0 in both

SCMs. However, inM1, changing X1 will always change Y , while inM2, changing X1 will never
change Y . This yields:

ϕL3
1 (M1) =

1

2
(E[Y |v]− E[YP (X1)|v]) (132)

=
1

2
(1− 0) =

1

2

ϕL3
1 (M2) =

1

2
(E[Y |v]− E[YP (X1)|v]) (133)

=
1

2
(1− 1) = 0
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This corresponds to the bounds obtained in Eq. (125), illustrating that ϕL3
1 (M1) ∈ [0, 1

2 ] and is not
identified by data, even in a setting where L1 and L2 Shapley values are both identified and equal to
zero.

As a concrete example, it would be reasonable inM1 to claim that choosing to buy rather than short
a stock, X1 = 1, is an explanation for positive returns Y = 1, even if the sign happens to be entirely
uncorrelated with the decision of whether to buy or short; contrarily, it would be absurd to claim in
M2 that an unrelated coin flip landing on heads X1 = 1 is an explanation for positive returns.

The two types of scenarios captured byM1 andM2 are indistinguishable given the causal diagram
and these particular observational and experimental data distributions, and we argue that it is correct
to output a bound in this case rather than claiming an exact value of zero, as L1 and L2 Shapley
values do. □

We generalize this intuition in the Explanatory Impossibility Theorem.
Theorem 9 (Explanatory Impossibility Theorem). Consider positive observational distribution
P (V) with binary variables, Ω′, the set of all SCMsM that induce the distribution, and why query
Why(y|x), where V = X ∪ {Y }. Ω′ yields no information about any L3 Shapley value ϕL3

X for
X ∈ X. □

In this subsection, we have motivated the problem of bounding explanatory variable attributions in
Thm. 9, illustrating that it is not a limitation of our method but rather a result of epistemic uncertainty
about the underlying data-generating model that cannot be reduced by obtaining more data, and which
can only be reduced by making substantive causal assumptions about the underlying data-generating
model. Therefore, any sound explanation technique must either require more information than
observational data, such as interventional data or structural causal assumptions, in order to output any
inference on a variable’s contribution to the outcome.

E.1.2 Bounding Counterfactual Shapley values

In this subsection, we introduce Alg. 1, a method to bound counterfactual Shapley values, extending
the counterfactual identification algorithm of [40]. The approach constructs two neural causal models
M̂1, M̂2 consistent with causal diagram G; it respectively minimizes and maximizes ϕX(w) for some
X ∈ V, subject to the constraint that the optimized model is consistent with observed data Z(M).

Algorithm 1: Bounding counterfactual Shapley values
Input: Query q : Ω→ R, variable of interest X ∈ V, L2 datasets Z(M), and causal diagram

G.
Output: Bounds on ϕL3

X .

1 M̂ ← NCM(G; θ)
2 ϕmin

X ← argminθ Ω(M̂) s.t. Z(M̂(θ)) = Z(M)

3 ϕmax
X ← argmaxθ Ω(M̂) s.t. Z(M̂(θ)) = Z(M)

4 return ϕmin
X , ϕmax

X

E.2 Experimental Setup

In this appendix, we provide additional details on our experimental setup and approach, complement-
ing the experiments described in Sec. 4 of the main text. Our experimental setting can be described
as semi-synthetic – we generate our data from a ground truth SCM, while the data is modeled on a
real-world dataset (MNIST and CelebA examples). In addition to these examples, in this appendix
we also discuss synthetic examples, which illustrate some further failure modes of the methods in the
literature.

Our experimental approach consists of two separate steps. In our first step, we are interested in
establishing whether the L3 Shapley values match with the human intuition on explanations. For this
step, having access to the ground truth SCM is helpful, since we can compute any quantity (such
as L1, L2, or L3 Shapley values) based on the SCM, without the limitations of finite samples or
identifiability issues. After establishing that our method is aligned with human intuition (using the
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ground truth SCM), while other methods are not, we move to the second step of our experimental
setup – inferring L3 Shapley values from a combination of causal assumptions (encoded in the causal
diagram) and data. This second step corresponds to real-world settings, in which we almost never
have access to the underlying SCM.

The remainder of this appendix is organized according to the above two steps. First, we go over
our examples, describing the ground truth SCMs we constructed (Apps. E.2.1-E.2.3). After this, we
discuss how to use the bounding technique described above in order to infer L3 Shapley values from
assumptions and data (App. E.2.4).

E.2.1 Color MNIST – Ground Truth

We first described the ground truth SCM for the color MNIST experiment, based on [28]. In this
example, we consider four variables, namely: the hue X of the image, the digit Y appearing the
image. The values of X,Y influence the 28x28 colored MNIST image I . Additionally, we consider
the digit classifier Ŷ , which is a deterministic function of I . In our constructed SCM, hue X and
digit Y are confounded, and digit Y and image I are confounded through the image’s saturation (the
confounding is through the latent variable uY ). The full SCM is given by:

P (U) =


uY ∼ Unif({0, . . . , 9})
uX ∼ Unif(0, 1)

ui
I ∼ MNIST(i)

(134)

Fβ,f =


X =

(
uY

9 + 0.5Φ(uX) + β
)

mod 1

Y = uY

I = hsv_to_rgb
(
uY=y
I , uY

9 , X
)

Ŷ = f̂(I)

. (135)

Here, β represents a hue shift parameter, f represents an image classifier, MNIST(i) denotes an
MNIST image containing the digit i selected uniformly at random, and hsv_to_rgb denotes the
conversion of a hue, saturation, and value triplet to a 28x28 RGB image. The causal diagram for this
SCM is shown in Fig. 3a.

The is aim to explain two LeNet [20] classifiers trained on the color MNIST dataset: a standard LeNet
classifier f , and a “robust" model g which applies a greyscale transform to the data before fitting
to it (these are the classifiers constructed by Bob and Alice, respectively). The relevant why query
to explain either model’s prediction is Why(ŷ|x, y, i). The detailed interpretation of the different
explanation methods is described in the main text (see Sec. 4.1).

E.2.2 CelebA – Ground Truth

We next describe the ground truth SCM for the CelebA experiment, based on [19]. We consider four
variables: the smiling indicator S, the indicator of whether the person’s mouth is open M , the image
of the person I (affected by S,M ). Additionally, we also consider a classifier M̂ , predicting whether
the person’s mouth is open, based on the image I . The full CelebA SCM is given by:

F =



S = US

M =


0 UM = 0

s UM = 1

1 UM = 2

I = Us,m
I

M̂ = fM̂ (I)

(136)

P (U) =


US ∼ Bern(0.5)

UM ∼ Categorical([0.05, 0.9, 0.05])

UI ∼ CelebA-HQ(Smiling, Mouth_Slightly_Open)
. (137)

Here, CelebA-HQ(Smiling, Mouth_Slightly_Open) denotes a distribution over a list of
four CelebA-HQ images, such that Us,m

I denotes an image where Smiling S = s and
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Figure 9: Causal diagrams for toy experiments.

Mouth_Slightly_Open M = m. In the SCM, as in the real world, smiling S has a positive
effect on the mouth being open M . The causal diagram for the setting is shown in Fig. 4.

The aim is to explain two diffusion-based classifiers, constructed by Bob and Alice. Bob constructed
a “standard” classifier M̂B , while Alice constructed a “robust” classifier M̂A, who applied a re-
weighing transformation to her dataset before fitting a model. The relevant why query to explain
either model’s prediction is Why(m̂|s,m, i). The detailed interpretation of the different explanation
methods is described in the main text (see Sec. 4.2).

E.2.3 Synthetic examples

In this section, we introduce several synthetic examples, which further highlight how our method
improves upon prior work (on top of the semi-synthetic examples discussed above and in the main
text). In particular, we evaluate L1, L2, and L3 Shapley values on four SCMs, which we refer to
as (a) spurious SCM; (b) chain SCM; (c) bow SCM. In all settings, variables are binary, and in
the observed event E = e they equal 1 (v = {x1, x2, y}). Also, in each SCM, the unobserved Ui

variables are sampled from Bern(0.5). Y = 1 is our event explanandum, and Why(y|x1, x2) our
query. Throughout, we focus on the attribution assigned to the first variable, X1. Graphs for each
SCM are shown in Fig. 9. We next discuss each SCM in order.

Figure 10: SVs for X1 in toy experiment SCMs.
Green and dotted red lines denote true and esti-
mated bounds. Error bars are negligible.

Spurious SCM (Shark Attacks, Ex. 5
and Fig. 9a) Daily shark attacks are high to-
day (X1 = 1), and so are ice cream sales
(X2 = 1); store profit is also high (Y = 1).
The graph is shown in Fig. 9a. The ground truth
SCM is given by:

M1 =


X1 := U12

X2 := U12 ∨ U2

Y := X2

(138)

Given that the high shark attack incidence X1 =
1 has no effect on Y , it should be assigned a
zero attribution. However, in Fig. 10 (first col-
umn, blue bar), we observe that L1 Shapley val-
ues give X1 a non-zero attribution, violating the
property of causal admissibility (Prop. 1). Con-
versely, L2, L3 Shapley values satisfy admissi-
bility in this example, giving a zero attribution
to the variable X1.

Chain SCM (Fig. 9b) The causal diagram for
the chain SCM is shown in Fig. 9b, and the SCM is given by:

M2 =


X1 := U1

X2 := (U1
2 ∧X1) ∨ (¬U1

2 ∧ (U2
2 ∨ ¬X1))

Y := X2

(139)

In our observed event, Y = 1, meaning that the variable Y takes its maximum value. Therefore, we
expect X1 to have a non-negative effect on Y ; X1 could not have had a negative effect on Y , since
Y attains its maximum. Contrary to this expectation, L1 and L2 SVs give negative attributions to
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the X1 variable (see Fig. 10 second column, blue and red bars). Therefore, both of these methods
provide counterintuitive explanations. In contrast, the L3 SVs for X1 are strictly positive, in line
with human intuition. Thus, even in this simple setting, one can see that L3 SVs produce attributions
superior to L1, L2 SVs.

Bow SCM (Fig. 9c) The causal diagram for the bow SCM is shown in Fig. 9c, and the SCM is
given by

M3 =


X1 := U12

X2 := (U1
2 ∧ U2

2 ) ∨ ((U1
2 ∨ U2

2 ) ∧ (X1 ∨ U12))

Y := X2

(140)

Given the observed even X1 = 1, X2 = 1, Y = 1, we can infer that that U12 = 1 based on the SCM.
The fact that U12 = 1 further implies that X1 has no effect on X2 and thus could not have an effect
on Y . Intuitively, therefore, we expect the variable X1 to be given a zero attribution. The SCM is
constructed such that X1 has a positive effect on X2 in some settings, and no effect in the observed
setting {x1, x2, y}. We see that the L3 SV for X1 are approximately zero (third column of Fig. 10).
However, both L1 and L2 Shapley values violate our expectations and admissibility; once again, X1

is incorrectly given a non-zero attribution while having no effect on Y .

Summary of synthetic examples. We argue that L1 SVs differ from L2, L3 SVs in the spurious
setting because L1 SVs capture spurious effects, violating admissibility. Discrepancies in the chain
and bow settings arise because L1, L2 SVs average over all units when considering the effect of X1

on Y , where the effect is on average negative and positive, respectively. On the contrary, L3 SVs only
consider units consistent with the observations, where the effects are strictly non-negative and zero,
respectively. Therefore, in the toy examples above, L3 SVs are better aligned with human intuition
for explanations.

E.2.4 Bounding L3 Shapley values from Assumptions & Data

In this section, we discuss the bounding of L3 SVs from real data and assumptions. We start with the
MNIST example. As a sanity check, we first test whether the standard and robust classifiers behave as
expected. For this, we investigate the performance of these models on a sample of 60000 generated
samples from the color MNIST dataset. In this setting, both models achieve near-perfect accuracy
(standard: 1, robust: 0.994). However, if we compare their performance on 60000 samples from the
data-generating model with β = 0.5 (that is, with a distribution shift), we find that the standard model
performance drops to close to random chance, while the robust model’s performance is unaffected
(standard: 0.181, robust: 0.994). Therefore, this empirically validates that the standard and robust
classifiers behave as expected by our construction.

We then move onto bounding the L3 SVs based on the data and the causal diagram. For computing
the bounds, we make use of L2 (interventional) data, and apply the bounding method described
in App. E.1.2. Specifically, we train a conditional diffusion model with 4000 steps [13] to model
P (I|X,Y, UY ) for 150 epochs. At inference time, we reduce this to 25 steps [35], still achieving
realistic results. The bounds obtained on the SVs are shown in Fig. 3d as error bars, and we can see
that the computed bounds from assumptions and data include the ground truth values computed from
the SCM.

We next move onto estimating bounds on L3 SVs for the synthetic examples (again using the
methodology described in App. E.1.2), based on the causal diagram and the observational distribution.
For the synthetic examples, as an additional verification, we can compute analytical bounds (as
expressions based on the observational distribution) by leveraging the bounds on the probability
of necessity (PN), introduced in Tian and Pearl [38]. This is possible given that all variables in
the synthetic examples are binary, and L3 SVs may therefore be computed using the observational
distribution and the PN. The true bounds for L3 SVs (based on the SCM) are shown as green intervals
in Fig. 10, while the bounds computed from the causal diagram and the observational distribution are
shown as dotted orange intervals. We can see that the true and estimated bounds are identical, and
that the computed bounds consistently include the true value of the L3 SV, empirically corroborating
the validity of our bounding approach.
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