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Abstract

Graphical models have been widely used as parsimonious encoders of assumptions
of the underlying structural causal models and provide a basis from which causal
inferences can be performed. Models that encode stronger constraints tend to have
higher expressive power at the expense of lower empirical falsifiability. In this
paper, we introduce two new collections of distributions which include counter-
factual quantities that become experimentally accessible under the counterfactual
randomization action. Correspondingly, we provide two new classes of graphical
models for encoding empirically testable constraints in these distributions. We
further present a sound and complete calculus, based on counterfactual calculus,
which licenses inference in these two new models with rules that are also fall
within the empirically falsifiable boundary. In addition, we formulate a hierarchy
over several graphical models based on the constraints they encode and study the
fundamental trade-off between the expressive power and empirical falsifiability of
different models across the hierarchy.

1 Introduction

Causal information is fundamental across scientific disciplines and human decision-making, and it
is increasingly recognized as a key element for advancing AI and machine learning in enhancing
robustness, interpretability, and generalizability [16, 1]. The Pearl Causal Hierarchy (PCH) organizes
such information into three layers: the observational, the interventional, and the counterfactual,
corresponding roughly to the ordinary human capabilities of seeing, doing, and imagining [16, 2].
Each layer is formalized through a distinct symbolic language and encodes causal quantities with
increasingly expressive semantics. For example, consider a system with two observed variables, X
(treatment, e.g., diet) and Y (outcome, e.g., BMI). Layer 1 (L1) includes observational distributions,
like P (y|x), which represents the probability of observing BMI y among individuals who naturally
follow diet x. Layer 2 (L2) contains interventional distributions, like P (y|do(x)), which represents
the probability of having BMI y among individuals who were externally assigned to diet x. Layer
3 (L3) comprises counterfactual distributions, like P (yx|x→), which represents the probability of
having BMI y if the diet had been set to x among those who in fact followed diet x→.

When the true underlying causal mechanism underpinning a phenomenon of interest – formally
represented by a Structural Causal Model (SCM) – is known, all layers of the PCH are immediately
computable. Unfortunately, it is rare for SCMs to be known at this level of precision in most real-world
scenarios. This gives rise to the field of causal inference, which seeks to understand the conditions
under which valid inferences can be made given access to limited features and data from the model.
The inferential process can be implemented through the causal inference engine [1], as illustrated
in Fig. 1. The engine takes three inputs: {(1)Query, (2)Data, (3)Model}, where each represents
a different aspect of the underlying SCM. The Query specifies the causal quantity of interest, the
Data consists of data gathered through interactions with the environment like random samplings or
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Figure 1: Unobserved SCM and the causal inference engine. The engine takes as input a query, a
model, and datasets, and returns whether the query is computable from the assumptions and data.

randomized experiments, and the Model encodes assumptions about the SCM. A common method
for articulating such assumptions is via graphical models, particularly causal diagrams [14, 15, 2, 6],
which encode constraints describing how different quantities within the PCH relate to one another. For
example, Pearl in his celebrated 1988 book gave a comprehensive study of Bayesian Networks (BN)
as encoders of L1 equality constraints between observational distributions implied by conditional
independence, like P (y|x) = P (y) [14]. In contrast, Causal Bayesian Networks (CBN) encode
equality constraints across distributions in both L1 and L2, like P (y|do(x)) = P (y|x) [15].

For a graphical model to be sufficient for supporting inference on a query, there must be a match
in expressiveness between the model’s constraints and the query, as illustrated in Fig. 2. This
matching reflects Nancy Cartwright’s famous motto “no causes in, no causes out” [4], which has been
formalized by the Causal Hierarchy Theorem (CHT): to perform inferences on a quantity in layer i,
one needs knowledge from layer i or above [2]. For instance, given an L2 query, a BN encoding only
L1 constraints is insufficient, while a CBN encoding both L1 and L2 constraints is both sufficient
and necessary for inference. A Counterfactual Bayesian Network (CTFBN) encoding L3 constraints,
while sufficient for the target query in L2, impose assumptions that are stronger than necessary [5, 6].

Figure 2: Expressive power of queries and graphical models
along the PCH. The model’s constraints should be at least
as expressive as the query for the causal inference engine to
work. Layer 3 is partitioned into two sub-regions: the green
region represents L3 distributions that cannot be accessed
via any experiments, while the blue region represents those
that can, at least in principle, be sampled via experiments.

While models that encode constraints
higher in the PCH support inferences
about more expressive queries, it is
also generally preferable to avoid un-
necessary assumptions for a given
query. This notion of parsimony is
grounded by the concept of empiri-
cal falsification from the philosophy
of science. As advocated by Pop-
per, a system is scientific only if it
is refutable by empirical tests [18].
The falsifiability of an assumption in
a graphical model depends on the fea-
sibility to draw samples from its un-
derlying distributions (also known as
realizability of the distributions [19].
Among the three layers of the PCH,
it is generally understood that data
from L1 and L2 distributions are, at
least in principle, attainable via ran-
dom sampling and randomized con-
trolled trials [8]. L3, in contrast, en-
codes counterfactual knowledge tradi-
tionally considered beyond the reach
of physical experimentation. For ex-
ample, the probability of necessity
and sufficiency (PNS), P (yx, y→x→), is an L3 quantity that cannot be sampled via any randomized
experiments. However, a recent work showed a surprising result that an L3 quantity known as the
effect of the treatment on the treated (ETT), P (yx|x→), can be sampled from using a new experi-
mental procedure called counterfactual randomization [3]. Subsequent work further refined and
characterized the set of L3 distributions that are realizable in principle [19].
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This empirical heterogeneity of distributions between L2 and L3 leads to an important question:
what assumptions are sufficient and necessary to answer a query in L3? In this paper, we address
this question by providing a finer-grained understanding of the region between L2 and L3 in PCH.
In particular, we focus on the orange region in Fig. 2, where models extend beyond the typical
(Fisherian) interventional world, which allows certain counterfactual queries to be answered. To this
end, we will formally define language/model/inferential machinery for two families of realizable
distributions. Together, they offer a precise formalization of Cartwright’s principle where “causes in”
(models/assumptions) are matched with “causes out” (queries). Our main contributions are:

(1) Graphical Models & Inferential Machinery: We introduce symbolic languages and valuation
semantics for two new collections of distributions, each entail quantities that become experimentally
accessible by a distinct implementation of counterfactual randomization. We then define two new
classes of graphical models, CBN2.25 and CBN2.5, that encode constraints within these distributions
which are amenable to empirical testing. We prove that counterfactual calculus with graphical checks
form a sound and complete inferential machinery for CBN2.25 and CBN2.5.

(2) Hierarchy of Graphical Models: We formally define a hierarchical structure for graphical models
based on constraints they encode and analyze this hierarchy from two angles: (a) Expressive Power
(b) Empirical Falsifiability. We show that models higher in the hierarchy encode stronger assumptions
that permit more expressive queries, but are increasingly harder to empirically falsify.

Notations. We denote variables by capital letters, X , and values by small letters, x. Bold letters,
X represent a set of variables and x a set of values. The domain of X is denoted by V al(X).
Two values x and z are consistent if they share common values for X → Z. We denote by x\Z the
value of X\Z consistent with x and by x → Z the subset of x corresponding to variables in Z. We
assume the domain of every variable is finite. W↑ denotes an arbitrary counterfactual event, and
V(W↑) = {W ↑ V|Wt ↑ W↑}. G[W] denotes a vertex-induced subgraph over W. We use kinship
notation for variable relationships: parents (Pa), children (Ch), descendants (De), ancestors (An).

Background and Definitions. We use Structural Causal Models (SCM) as the underlying semantical
framework [15]. An SCM M is a 4-tuple ↓V,V,F , P (u))↔, where U is a set of exogenous (latent)
variables, distributed according to P (u); V is a set of endogenous (observable) variables; F is a set
of functions such that for each Vi ↑ V, fi maps from a set of exogenous variables Ui ↗ U and a set
of endogenous variables Pai ↗ V to the V al(Vi) [2]. An SCM M induces a causal diagram G over
V where directed edges reflect functional arguments and bidirected edges reflect shared or correlated
latent confounders. We assume the model has no cyclic dependencies among variables. Two variables
belong to the same c-component if they are connected by a path made entirely of bidirected edges.

Intervention do(x) in an SCM M creates a submodel Mx, where functions generating X are replaced
with constant values x. The functions in Mx are denoted as Fx. Given a set of variables Y ↑ V, the
solution for Y in Mx defines a potential outcome denoted as Yx(u). ↘Yx↘ denotes the exclusion
operator such that ↘Yx↘ = Yz with Z = X →An(Y )GX

, z = x → Z and GX is G with all incoming
edges into X removed. An SCM M also induces all quantities within the Pearl Causal Hierarchy
(PCH): for any Y,Z, ...,X,W ↗ V, L1 (Observational): PM(y) =

∑
u 1[Y(u) = y]P (u); L2

(Interventional): PM(yx) =
∑

u 1[Yx(u) = y]P (u); L3 (Counterfactual): PM(yx, ..., zw) =∑
u 1[Yx(u) = y, ...,Zw(u) = z]P (u). We denote the collection of all L1 distributions as PL1 ,

the collection of all L2 distributions as PL2 , and the collection of all L3 distributions as PL3 .

Equalities or inequalities between polynomials over Li terms represent special marks an SCM
imprints on its distributions, called invariance constraints. A graphical model (also known as a
compatibility relation) is a pair ↓G,P↔, where G is a graph and P is a collection of distributions over
V. The missing edges in G represent certain invariance constraints within P. Some examples of
graphical models corresponding to three layers of the PCH are Bayesian Network (BN) [14], Causal
Bayesian Network (CBN) [2], and Counterfactual Bayesian Network (CTFBN, [6]).

The counterfactual randomization action (CTF-RAND(X ≃ C)(i)) [3, 19] is an experimental
procedure to fix the value of X as an input to functions generating C ↗ Ch(X) using a randomising
device having support over V al(X), for unit i, where Ch(X) stands for variables taking X as an
argument in their functions. A feasible action set describes all experimental actions allowed in a
system. The maximal feasible action set contains all sampling, intervention and CTF-RAND actions
over all variables and gives the agent the most granular experimental capabilities. More detailed
background definitions and examples are provided in Appendix A for reference.
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2 CBN2.25 and CBN2.5: Graphical Models for Realizable Constraints

In this section, we provide a finer-grained analysis of the counterfactual layer (L3) by circumscribing
subsets of distributions that become realizable, assuming the feasible action set includes all actions
required to sample from any L2 distributions, along with some counterfactual randomization capa-
bilities. Specifically, we define two distinct collections of distributions that are realizable based on
different degrees of flexibility in how counterfactual randomization influences downstream variables
(Sec. 2.1). We then introduce the corresponding graphical models encoding constraints in these
distribution sets (Sec. 2.2), followed by the inferential machinery for each model (Sec. 2.3).

2.1 Formal Languages for Distribution Families

The first collection of realizable distributions is defined under the assumption that counterfactual
randomization is allowed for all variables in V, subject to the constraint that each CTF-RAND on X
fixes a single value of X across all its children. The symbolic representation and valuation given an
SCM for distributions in this collection are provided below.
Definition 1 (Layer 2.25 (L2.25)). An SCM M = ↓U,V,F , P (u)↔ induces a family of joint
distributions over V indexed by each intervention value set x. For each X,Y ↗ V,x ↑ V al(X):

PM(
∧

Vi↓Y\X

Vi[xi]
= vi,

∧

Vi↓Y↔X,vi=Vi↔x

Vi[xi\vi]
= vi)

=
∑

u

1[
∧

Vi↓Y\X

Vi[xi]
(u) = vi,

∧

Vi↓Y↔X,vi=Vi↔x

Vi[xi\vi]
(u) = vi]P (u)

(1)

such that (i) xi ↗ x and
⋃

i xi = x; and (ii) For any vi ↑ x, for all Vj ↑ Y, if Vi ↑ An(Vj) in
Mx\Vj

, then vi ↑ xj . The collection of all such distributions is denoted as PL2.25 .

Cond. (i) of Def. 1 ensures that only value assignments from the intervention value set x appear in the
subscript, and each value in x appears at least once to prevent redundancy of representing the same
distribution under different interventions where x1 ⇐ x2. Cond. (ii) enforces all descendants of the
intervened variable X to share the common value of x, unless the path from X to the descendant is
blocked by another variable in the intervention set. Both conditions arise from the limited flexibility
imposed on the counterfactual randomization action.

The second collection of distributions is defined under the maximal feasible action set with a more
flexible counterfactual randomization that allows each children of X to take a potentially different
value. This relaxation expands the set of realizable distributions beyond those in the first collection.
Next, we define the symbolic representation and valuation of these distributions.
Definition 2 (Layer 2.5 (L2.5)). 1 An SCM M = ↓U,V,F , P (u)↔ induces a family of probability
distributions over V indexed by each intervention variable set X. For each Y,X ↗ V:

PM(
∧

Vi↓Y\X

Vi[xi]
= vi,

∧

Vi↓Y↔X,vi=Vi↔x

Vi[xi\vi]
= vi)

=
∑

u

1[
∧

Vi↓Y\X

Vi[xi]
(u) = vi,

∧

Vi↓Y↔X,vi=Vi↔x

Vi[xi\vi]
(u) = vi]P (u)

(2)

such that (i) Xi ↗ X, xi ↑ V al(Xi) and
⋃

i Xi = X; and (ii) For any Vi, B ↑ X →Pa(Vi), for all
Vj ↑ Y, if Vi ⇒↑ Xj and Vi ↑ An(Vj) in Mxj , then xi → B = xj → B. The collection of all such
distributions is denoted as PL2.5 .

The key difference between L2.25 and L2.5 lies in how the distributions are indexed: L2.25 are
indexed by specific interventional value sets x ↑ V al(X), while L2.5 are indexed by interventional
variable sets X. The more refined index for L2.25 creates more restrictions on the expressiveness for
its distributions, which is also reflected in the differences between conditions of the two definitions.
Similar to Def. 1, Cond. (i) of Def. 2 ensures that each variable in the intervention set appears at
least once in the subscript. In addition, it relaxes Def. 1 by allowing multiple value assignments for

1Some nested counterfactuals also belong to this layer, provided that their unnested formula contain only
distributions in this layer (Appendix B).
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(a) External state

(b) Transformation

(c) Induced Distribution

(i)
Interventional

(iii)
Counterfactual

(ii)
L2.25/L2.5

P (U) P (U) P (U)

Fx
Y

Fx
Y

Fw
Z

· · ·

P (Yx) P (Yx, . . . ,Zw)

Fxi

Y\X

Fxi\vi

X

P (
∧

Y\X vi[xi]
,
∧

X vi[xi\vi]
)

satisfying conditions in Def. 1/2

Figure 3: Given an SCM’s initial state (i.e., population) (a), we show the different functional
transformations (b) and the corresponding induced distribution (c) of each layer of the hierarchy. (i)
represents the transformation (i.e., F ) from the natural state of the system (P (U)) to an interventional
world (i.e., with modified mechanisms Fx), (ii) to multiple counterfactual worlds representing
L2.25/L2.5, and (iii) to multiple counterfactual worlds with no constraints on the worlds joint.

the interventional variable set X. Cond. (ii) is also relaxed such that value consistency enforcement
for downstream variables start at children of the intervened X , instead of at X itself.

The evaluation processes for distributions in these two new layers are illustrated in Fig. 3, which are
contrasted with L2 and L3. A variable in Y can only go through one submodel: each variable in
the intervention set X is evaluated in its own submodel Mxi\vi , corresponding to the values of X
it takes, and each variable outside the intervention set is evaluated in its own submodel Mxi based
on the value of X it receives. The submodels in L2.25 and L2.5 are jointly constrained to satisfy the
two conditions in Def. 1 and Def. 2, respectively. By comparing the evaluation processes across
different layers within PCH, we see that L2.25 and L2.5 are more expressive than L2 as all variables
in Y are evaluated in a single submodel in L2 while L2.25/L2.5 are evaluated from joining multiple
submodels (or counterfactual worlds). On the other hand, they are less expressive than the full-blown
L3, as they impose conditions on which specific submodels are allowed to be joined.
Example 1 (SCM inducing L2.25/L2.5). Consider the SCM M = ↓U = {Ux, Uy, Uz},V =
{X,Y, Z},F , P (u)↔, where F = {X ⇑ fx(Ux);Z ⇑ fz(X,Uz);Y ⇑ fy(X,Uy)} and Ux ⇓⇓
Uz⇓⇓Uy . P (X,Yx, Zx), indexed by the interventional value set x, belongs to L2.25 as it satisfies Cond.
(i) of Def. 1 by having only x in the subscript and Cond. (ii) by sharing consistent subscript between
all children of X (i.e., Y, Z). P (X,Yx, Zx→), in contrast, does not belong to L2.25 as it contains
conflicting value assignments for X which makes it not indexable by any specific interventional value
set. However, it belongs to L2.5 as the conditions in Def. 2 allow different value assignments for the
same variable in the intervention set. The L3 distribution P (Yx, Y ) falls outside both languages as it
contains the same variable Y under two different submodels, which are not allowed in L2.25/L2.5

2.

2.2 Graphical Models

With the new collections of distributions properly defined, we introduce two graphical models to
encode the corresponding constrains and compatibility relations.
Definition 3 (Causal Bayesian Network 2.25 (CBN2.25 - Semi-Markovian)). Given a graph with
directed and bidirected edges, G, and let PL2.25 be the collection of all L2.25 distributions over V.
Then, G is a CBN2.25 for PL2.25 if:

(i) [Independence Restrictions] For a fixed intervention value set v in V al(V) and a subset of
variables W ↗ V. Let W↑ be the set of counterfactuals of the form Wpaw

with paw taking values
in v, C1, ...,Cl the c-components of G[V(W↑)], and C1↑, ...,Cl↑ the corresponding partition over
W↑. Then P (W↑) factorizes as:

P (
∧

Wpaw↓W↑

Wpaw) =
l∏

j=1

P (
∧

Wpaw↓Cj↑

Wpaw) (3)

2More examples of L2.25/L2.5 are provided in B.
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X YZ

(a)

X Yx

(b)

Figure 4: Sample causal diagram G and its AMWN GA(G, {Yx, X})

(ii) [Exclusion Restrictions] For every variable Y ↑ V with parents Pay , for every set Z ↗ V\(Pay⇔
{Y }), and any counterfactual set W↑ such that P (Ypay,z,W↑) ↑ PL2.25 :

P (Ypay,z,W↑) = P (Ypay
,W↑) (4)

(iii) [Consistency Restrictions] For every variable Y ↑ V with parents Pay , X ↗ Pay , for every set
Z ↗ V\(X ⇔ {Y }), and any counterfactual set W↑ such that P (Yxz = y,Xz = x,W↑) ↑ PL2.25 :

P (Yz = y,Xz = x,W↑) = P (Yxz = y,Xz = x,W↑) (5)

It can be seen that CBN2.25 closely resembles CTFBN, sharing the same types of constraints but
restricted to the subset of distributions circumscribed to L2.25. Cond. (i) requires variables not
sharing latent confounders to be jointly independent once their parents are fixed by intervention.
Cond. (ii) state that once the parents of a variable Y have been fixed, no other intervention could
affect the value of Y , regardless of any other observation. Finally, Cond. (iii) connects observations
and interventions. Intuitively, if a parent X of Y has been observed taking the value x while both X
and Y are under the same intervention do(Z = z), then it is the same as having Y being intervened
by do(Z = z,X = x). Importantly, the next proposition states that a causal diagram G induced by
an SCM M is a CBN2.25 for the L2.25 distribution M generates.
Theorem 1 (L2.25-Connection — SCM-CBN2.25). The Causal diagram G induced by the SCM M
following the constructive procedure in Def. 11 is a CBN2.25 for PL2.25 , the collection of all L2.25

distributions induced by M.

Example 2 (CBN2.25). Given the SCM in Example 1, the CBN2.25 induced = ↓G,PL2.25↔ with G
being the causal diagram in Fig. 4(a) and PL2.25 satisfying the following constraints:

(i)[Independence Restrictions] P (X,Yx, Zx) = P (X)P (Yx)(Zx) (6)
(ii)[Exclusion Restrictions] P (Xa = x,W↑) = P (X = x,W↑),a ↗ {z, y} (7)

P (Yxz = y,W↑) = P (Yx = y,W↑) (8)
P (Zxy = z,W↑) = P (Zx = z,W↑) (9)

(iii)[Local Consistency] P (Y = y,X = x) = P (Yx = y,X = x) (10)
P (Yz = y,Xz = x,W↑) = P (Yzx = y,Xz = x,W↑) (11)
P (Z = z,X = x,W↑) = P (Zx = z,X = x,W↑) (12)
P (Zy = z,Xy = x,W↑) = P (Zyx = z,Xy = x,W↑) (13)

where W↑ can be any set of counterfactual variables such that P (·) ↑ PL2.25 .

Similarly for L2.5, a graphical model can be defined by imposing the same type of constraints on
distributions circumscribed to L2.5. The causal diagram G induced by an SCM M is also a CBN2.5
for the L2.5 distributions M generates. Detailed definition and theorem are given in Appendix C.

2.3 Inferential Machinery

P (yz, x) = P (yz, xz) (Eq.(7)) (14)
= P (yxz, xz) (Eq.(11)) (15)
= P (yx, xz) (Eq.(8)) (16)
= P (yx, x) (Eq.(7)) (17)
= P (y, x) (Eq.(10)) (18)

From the definitions of CBN2.25 and CBN2.5, we ob-
serve that constraints listed are local, namely, they in-
volve counterfactual variables with their parents in the
subscripts. These local constraints serve as a basis to be
translated and combined to generate global constraints
involving other variables, possibly far away in G.
Example 3 (Local to Global Constraints). Consider
the CBN2.25 from Example 2. One global constraint
implied by it, which is not in the set of local constraints
in CBN2.25 definition is P (yz, x) = P (y, x). Still, it
can be derived from composition of several local constraints as shown in equations (on the right).
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The inferential machinery associated with a graphical model is exactly to facilitate the process of
composing the local constraints defined in the model to determine whether a given query can be
expressed as a function of the available data. In the case of a CBN, one such machinery is Pearl’s
celebrated do-calculus [15], while for CTFBN, an example is the ctf-calculus [6]. As discussed
earlier, the key difference between CBN2.25/CBN2.5 and CTFBN lies in the distributions where the
local constraints are imposed on. Building on ctf-calculus, we provide a machinery for inferences
within CBN2.25/CBN2.5, by restricting the rules to distributions in the corresponding layers.
Definition 4 (Counterfactual Calculus (ctf-calculus) for CBN2.25/CBN2.5). Let G be a
CBN2.25/CBN2.5 for PL2.25 /PL2.5 , then PL2.25 /PL2.5 satisfies the Counterfactual-Calculus rules
according to G. Namely, for any disjoint sets X,Y,Z,W,T,R ↗ V the following three rules hold:

Rule 1 (Consistency Rule - Observation/Intervention Exchange)
P (yT↑x,xT↑ ,w↑) = P (yT↑ ,xT↑ ,w↑) (19)

Rule 2 (Independence Rule - Adding/Removing Counterfactual Observations)
P (yr|xt,w↑) = P (yr|w↑) if (Yr ⇓⇓Xt|W↑) in GA (20)

Rule 3 (Exclusion Rule - Adding/Removing Interventions)
P (yxz,w↑) = P (yz,w↑) if (X →An(Y) = ↖) in GZ (21)

where GA is the AMWN GA(G,Yr ⇔Xt ⇔W↑) 3, and all P (·) in the rules belong to PL2.25 /PL2.5 .

The three rules of the calculus can be thought of as the global counterparts to the three conditions
in the definitions of CBN2.25 and CBN2.5. To ensure all P (·) in the rules belong to PL2.25 /PL2.5

given G, we introduce a graphical criterion. For L2.5, the criterion checks the counterfactual ancestor
set, but for L2.25, it also needs to check descendants of ancestors as the more restrictive CTF-RAND
imposes stronger constraints over all downstream variables sharing the same intervened parents.
Definition 5 (Counterfactual Reachability Set). Given a graph G and a potential outcome Yx,
the counterfactual reachability set of Yx, denoted CRS(Yx), consists of each ↘Wx↘ s.t. W ↑
(An(Y ) ⇔ {De(V ) : ↙V ↑ X})\X and ↘Wx\w↘ s.t. W ↑ (An(Y ) ⇔ {De(V ) : ↙V ↑ X}) →X.
For a set W↑, CRS(W↑) is defined to be the union of the CRS of each potential outcome in the set.
Lemma 1. A distribution Q = P (W↑) is in the L2.25/L2.5 distributions induced by any SCM
compatible with a given graph G if and only if the set CRS(W↑) satisfies (i) and (ii) / An(W↑)
satisfies (i): (i) Does not contain any pair of potential outcomes Ws,Wt of the same variable W
under different regimes where s ⇒= t; (ii) Does not contain any pair of potential outcomes Rs,Wt

with inconsistent subscripts where s →T ⇒= t → S.
Example 4. Consider the causal diagram in Fig. 4(a) and whether P (Zx, Yx→) belongs to layer 2.25
induced by the corresponding SCMs. The reachability set CRS(Zx, Yx→) = {X,Zx, Yx, Zx→ , Yx→}.
The joint counterfactual {Zx, Zx→} is in the reachability set with Z under different regimes. Applying
Lemma 1, we conclude that P (Zx, Yx→) is not in the L2.25 distributions.

With Lemma 1 to ensure that the distributions are in the corresponding layers, we can apply ctf-
calculus in CBN2.25 and CBN2.5. This calculus guarantees the correctness of derivations from the
available L1 or L2 distributions to a counterfactual query.
Theorem 2 (Soundness and Completeness for CBN2.25/CBN2.5 Identifiability). An L2.25/L2.5

quantity Q is identifiable from a given set of observational and interventional distributions and a
CBN2.25/CBN2.5 if and only if there exists a sequence of applications of the rules of ctf-calculus
for CBN2.25/CBN2.5 and the probability axioms restrained within L2.25/L2.5 that reduces Q into a
function of the available distributions.
Example 5 (Effect of the Treatment on the Treated). Consider the causal diagram G in Fig. 4(a)
and the effect of treatment on the treated (ETT), P (yx|x→), given observational distributions P (v) is
available as input. The derivation following the ctf-calculus rules are:

P (yx|x→) = P (yx) (Rule 2: Yx ⇓⇓X in GA(G, {Yx, X}) Fig. 4(b)) (22)
= P (yx|x) (Rule 2: Yx ⇓⇓X in GA(G, {Yx, X}) Fig. 4(b)) (23)
= P (y|x) (Rule 1: Consistency) (24)

where Eq. (22) and (23) are justified by Lemma 1, as CRS(X,Yx) = {X,Zx, Yx} is in L2.25.
3Definition and algorithm for Ancestral Multi-World Network (AMWN) is given in Appendix. C
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3 Hierarchy of Graphical Models

In this section, we formally introduce a more refined hierarchy of graphical models defined at different
layers of the PCH. We then illustrate how models in the hierarchy vary in terms of the types of queries
they support and the empirical falsifiability of assumptions they encode. First, we note that the two
collection of distributions defined earlier (Def. 1 and Def. 2) can be placed within the PCH.
Theorem 3 (PCH*). Given an SCM M and its induced collections of observational (PL1),
interventional(PL2), L2.25 (PL2.25), L2.5 (PL2.5), and counterfactual (PL3) distributions: PL1 ↗
PL2 ↗ PL2.25 ↗ PL2.5 ↗ PL3 .

Figure 5: Pearl Causal Hierarchy (PCH↑) and hierarchy of graphi-
cal models induced by an SCM

The hierarchy of distributions is
graphically illustrated on the left
side of Fig. 5. Building on this
hierarchy of distributions, we
consider the constraints encoded
by each graphical model. Given
a causal diagram G, the con-
straints it encodes arise from the
interpretation of missing edges.
As we move higher up in the hi-
erarchy of graphical models, the
missing edges corresponds to in-
creasingly stronger constraints,
as illustrated in example below.
Example 6. Consider the causal
diagram in Fig. 4(a). The con-
straints encoded by the missing
directed edge from Z to Y across
different layers are (P(·) denotes
the power set):

BN: P (Y |X,Z) = P (Y |X) (25)
CBN: P (Yxz) = P (Yx) (26)
CBN2.25: P (Yxz,W↑) = P (Yx,W↑), ↙W↑ ↑ P({X,Zx}) (27)
CBN2.5: P (Yxz,W↑) = P (Yx,W↑), ↙W↑ ↑ P({X,Zx}) ⇔ P({X,Zx→}) (28)
CTFBN: P (Yxz,W↑) = P (Yx,W↑), ↙W↑ (29)

Moving from BN to CBN adds L2 constraints to the assumptions set, and moving from CBN to the other
three models introduces L3 constraints. Among the three models encoding counterfactual constraints,
increasing flexibility to express richer forms of W↑ as we move up the hierarchy corresponds to the
stronger assumptions. Missing bidirected edges encode independence constraints at different layers:

CBN: P (Zx) = P (Z|X = x) (30)
P (Yx) = P (Y |X = x) (31)

CBN2.25: P (Zx, Yx, X) = P (Zx)P (Yx)P (X) (32)
CBN2.5: P (Zx, Yx→ , X) = P (Zx)P (Yx→)P (X) (33)

CTFBN: P (
∧

x↓V al(X)

Zx,
∧

x→↓V al(X)

Yx→ , X) = P (
∧

x↓V al(X)

Zx)P (
∧

x→↓V al(X)

Yx→)P (X) (34)

As we move up the hierarchy, independence constraints involve richer sets of variables, reflecting the
increase in strength of the assumptions.

In fact, constraints encoded by graphical models higher in the hierarchy always imply those of models
lower in the hierarchy. This property defines a hierarchy of graphical models, as illustrated in Fig. 5.
Theorem 4 (Hierarchy of Graphical Models, PCH↑). Given a causal diagram G, the set of constraints
it encodes when it is interpreted as a graphical model on layer i is a subset of the constraints it
encodes when it is interpreted as a graphical model on layer j, when i ∝ j.
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As discussed earlier, the causal inference engine works when a query is matched with a model that
encodes sufficient – and ideally necessary – set of assumptions, at least in principle. This matching
logic can be understood from two complementary perspectives.

The first one concerns the expressiveness of the query a model can support for valid inferences. In
other words, it is about the sufficiency of the assumptions in the model to enable inference based
on the query. When the expressiveness of the query exceeds that of the model’s assumptions, the
causal inference engine fails to proceed. For example, a BN has all its constraints in L1, and thus
it is helpless in making inference on an L2 query like P (y|do(x)). Similarly, a CBN only encodes
constraints on L2 and it cannot help for making inference on L3 queries like P (Yx, X). In contrast,
when a model’s assumptions are expressive enough to support the query, we say there is a match
between the query and the model. A CTFBN, currently sitting at the top of the graphical hierarchy,
can match with the most expressive queries in the PCH 4. This dimension of a model’s capabilities is
referred to as its expressive power: models higher in the hierarchy support more expressive queries.

The second perspective concerns whether the model encodes only the necessary assumptions for a
given query, or if it is parsimonious enough. As we move up the hierarchy, models encode increas-
ingly stronger assumptions that are harder to empirically falsify, often requiring more sophisticated
experimental capabilities. If a model contains assumptions not required for the inference task, these
assumptions may be unnecessarily burdensome, especially in terms of empirical falsification. There-
fore, given a query, the preferred model is typically the one with the fewest unnecessary assumptions,
while it can still potentially answer the query. This dimension is referred to as the model’s empirical
falsifiability: models higher in the hierarchy encode stronger, and often less falsifiable, assumptions.

X Y

Z

Figure 6: Causal di-
agram for NDE

Example 7 (Natural Direct Effect (NDE)). Consider G in Fig. 6. The nat-
ural direct effect from X to Y , NDEx,x→(y) = P (yx→,Zx) ′ P (yx). Ap-
plying unnesting, the first term becomes

∑
z P (yx→z, zx), which is ID if and

only if NDE is ID. Let Q be P (yx→z, zx), which is an L2.25 query in this
case. Q can be identified in the CBN2.5 associated with G via ctf-calculus as
P (yx→z, zx)=P (y|x→, z)P (z|x). The CTFBN, encoding stronger constraints
than CBN2.5, can also identify Q; but it includes unnecessary assumptions
like P (Zx, Zx→ , X) = P (Zx, Zx→)P (X), with cannot be tested given the current experimental limits.
The CBN associated with G, in contrast, is not expressive enough to support inference on Q.

Q Layer GM Suff. Nec.
L2.5 CBN x ↭
L2.5 CBN2.5 ↭ ↭
L2.5 CTFBN ↭ x

Table 1: Examples of Matching between
Graphical Models and Queries. ‘Suff.’:=
Sufficient and ‘Nec.’:= Necessary

This example further highlights the tension between the
expressiveness of the queries and the models, where the
optimal match occurs when the assumptions in the model
are both sufficient and necessary for inference. With the
two new models, the necessity boundaries in L3 are re-
fined such that queries in L2.25/L2.5 better match with
the more parsimonious, and potentially falsifiable, models
CBN2.25/CBN2.5. In a nutshell, models higher in the
hierarchy gain power by encoding constraints over increas-
ingly expressive distributions. However, these gains come
at the expense of increased difficulty for empirical falsi-
fication. It is therefore crucial for researchers to understand this trade-off and choose a model that
appropriately balances inferential capabilities and testability for the task at hand.

4 Conclusions

In this paper, we introduced two new classes of graphical models, CBN2.25/CBN2.5, encoding
constraints in two distinct collections of distributions that are realizable given counterfactual random-
ization. We proved that the models are induced naturally by SCMs (Thm. 1) and provided a sound
and complete inferential machinery within them (Thm. 2). We placed the new distribution collections
within the PCH (Thm. 3) and proved that graphical models encoding constraints in the PCH also
form a hierarchy (Thm. 4). We then highlighted the tension between expressive power and empirical
falsifiability of models in this hierarchy. We hope this work supports a deeper understanding of
graphical models, and guides researchers in making more informed model selection decisions.

4This does not immediately imply identification, but at least in principle, certain queries can be answered.
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A Background and Definitions

In this section, we introduce the basic definitions and concepts that are fundamental to this work.

A.1 SCMs and Graphical Models

Definition 6 (Structural Casual Model (SCM) [2]). An SCM M is a 4-tuple ↓V,V,F , P (u))↔, where

• U is a set of background variables, also called exogenous variables, that are determined by
factors outside the model;

• V is a set {V1, V2, ..., Vn} of variables, called endogenous, that are determined by other
variables in the model – that is, variables in U ⇔V;

• F is a set of functions {f1, f2, ..., fn} such that each fi is a mapping from (the respective
domains of) Ui ⇔ Pai to Vi, where Ui ↗ U,Pai ↗ V\Vi, and the entire set F forms a
mapping from U to V. That is, for i = 1, ..., n, each fi ↑ F is such that

vi ⇑ fi(pai,ui) (35)

i.e., it assigns a value to Vi that depends on (the values of) a select set of variables in U⇔V;
and

• P (u) is a probability function defined over the domain of U

Intervention in an SCM can be viewed as a modification of the model by changing the mechanism of
the intervened variables, while keeping all other components of the SCM intact.
Definition 7 (Submodel — “Interventional SCM” [15]). Consider an SCM M =
↓U,V,F , P (u)↔. Given X ↗ V and x being a particular realization of X. A submodel Mx of M
is the causal model

Mx = ↓U,V,Fx, P (u)↔,where (36)
Fx = {fi : Vi ⇒↑ X} ⇔ {X = x} (37)

The impact of the intervention on an outcome variable Y is commonly called the potential outcome:
Definition 8 (Potential Outcome [15]). Let X and Y be two sets of variables in V, and u be a unit.
The potential outcome Yx(u) is defined as the solution for Y of the set of equations Fx with respect
to SCM M (for short, YMx(u)). That is, Yx(u) = YMx(u).

An SCM induces observational, interventional and counterfactual quantities over the endogenous
variables, which form three layers known as the Pearl Causal Hierarchy (PCH).
Definition 9 (Pearl Causal Hierarchy (PCH) ([2]) ). An SCM M =
↓U,V,F , P (u)↔ induces three layers of probability distributions which form the Pearl Causal
Hierarchy. For any Y,Z, ...,X,W ↗ V, the three layers of distributions are given by:

• L1 (Observational):
PM(y) =

∑

u

1[Y(u) = y]P (u) (38)

• L2 (Interventional):
PM(yx) =

∑

u

1[Yx(u) = y]P (u) (39)

• L3 (Counterfactual):

PM(yx, ..., zw) =
∑

u

1[Yx(u) = y, ...,Zw(u) = z]P (u) (40)

The collection of all L1 (Observational) is denoted as PL1 , the collection of all L2 (Interventional)
is denoted as PL2 , and the collection of all L3 (Counterfactual) is denoted as PL3 .
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(a) External state

(b) Transformation

(c) Induced Distribution

(i)
Observational

(ii)
Interventional

(iii)
Counterfactual

P (U) P (U) P (U)

F Fx Fx Fw· · ·

P (Y) P (Yx) P (Yx, . . . ,Zw)

Figure 7: Given an SCM’s initial state (i.e., population) (a), we show the different functional
transformations (b) and the corresponding induced distribution (c) of each layer of the hierarchy. (i)
represents the transformation (i.e., F ) from the natural state of the system (P (U)) to an observational
world, (ii) to an interventional world (i.e., with modified mechanisms Fx), and (iii) to multiple
counterfactual worlds (i.e., with multiple modified mechanisms).

PCH specifies both the symbolic representation and the valuations of each probabilistic quantity
given an underlying SCM. If the SCM is fully specified, all conceivable quantities from any layer of
the PCH are immediately computable (Fig. 7). However, in most real-life applications, only partial
knowledge of the SCM is available. In order to understand what causal inference tasks are possible
given this partial knowledge, we first need to analyze the marks an SCM imprints on its distributions.
This type of information is called invariance constraints as defined below:
Definition 10 (Invariance Constraint). Given an SCM M↑, an invariance constraint is an equality or
inequality between polynomials over Li terms of the PCH.

For example, a common type of invariance constraint used in graphical models is conditional
independence over observational distribution [2], such as P (y|x) = P (y), which represents that
X is probabilistically independent of Y . Invariance constraints coarsen the PCH by zooming into
the relationships among different distributions while abstracting away from their specific numerical
values. As more invariance constraints are included in the assumption set, the granularity of the
encoded knowledge about the underlying SCM increases. Rather than enumerating each constraint
individually, we leverage graphs to encode them – capitalizing on the close relationship between
invariance constraints and the topological properties of graphs (specifically kinship among nodes,
like parents, neighbors and ancestors, etc.).

Given an SCM M, a graph can be constructed to capture the topological information among
endogenous and exogenous variables.
Definition 11 (Causal Diagram [2]). Consider an SCM M = ↓U,V,F , P (u)↔. Then G is a causal
diagram of M if constructed as follows:

(1) add a vertex for every endogenous variable in the set V

(2) add an edge Vi ′≃ Vj for every Vi, Vj ↑ V if Vi appears as an argument of fj

(3) Add a bidirected edge Vi ↫↬↬↬↬⊜ Vj for every Vi, Vj ↑ V if the corresponding functions
fi, fj share some common U ↑ U as an argument, or the corresponding Ui, Uj ↑ U are
correlated.

The pairing of such a graph with the set of invariance constraints it encodes over a collection of
distributions defines a graphical model (also known as a compatibility relation).
Definition 12 (Graphical Model). A graphical model is a pair ↓G,P↔, where G is a graph and P is a
collection of distributions over the same set of endogenous variables V. Further, the missing edges
in G represent certain invariance constraints within P.

Depending on the assumptions made on different layers of the PCH, different graphical models can
be derived. Some examples of models corresponding to the three layers of the PCH are Bayesian
Network (BN) [14], Causal Bayesian Network (CBN) [2] and Counterfactual Bayesian Network
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(CTFBN) [6]. These graphical models are powerful tools for encoding assumptions to perform causal
inference tasks such as identification (Fig. 1), with each model accompanied by its own inferential
machinery like do-calculus for CBN and ctf-calculus for CTFBN [14, 15, 5].

As we move up the ladder of PCH, the corresponding graphical models encode invariance constraints
over increasingly richer sets of distributions. Naturally, these growing sets of constraints induce a
hierarchy among the graphical models, where models higher in the hierarchy offer greater inferential
power. However, adding more assumptions to the set of invariance constraints can also increase the
difficulty of empirically verifying them.
Example 8 (Graphical Models). Consider the SCM M = ↓U = {Ux, Uy},V = {X,Y },F , P (u)↔,
where

F =

{
X ⇑ Ux

Y ⇑ X ∞ Uy
(41)

P (u) : Ux ∈ Bernoulli(0.2), Uy ∈ Bernoulli(0.3) (42)

The endogenous variables V represent, respectively, a certain treatment X (e.g., drug) and an
outcome Y (survival). The exogenous variables Ux and Uy represents other variables outside the
model that affect X and Y , respectively.

The SCM M is unobserved, yet it imprints constraints over the distributions it induces. And this
information can be encoded as invariance constraints using the causal diagram shown in Fig. 8(c).
When this causal diagram is interpreted as the graphical model for different layers of the PCH, it
encodes different constraints according to the definitions of models:

• L1 BN: No invariance constraints

• L2 CBN:

P (y|do(x)) = P (y|x) (43)
P (x|do(y)) = P (x) (44)

• L3 CTFBN:

P (yx, y
→
x→ , x→→) = P (yx, y

→
x→)P (x→→) (45)

P (xy) = P (x) (46)
P (yx, x) = P (y, x) (47)

The constraints in each model determines its inferential power. Given the L1 constraints, no inference
can be drawn as the constraint set is empty. However, with the L2 constraints, the causal effect from
the treatment to the outcome can be inferred, and in this case it coincides with their observational
correlation (i.e. P (y|do(x)) = P (y|x)). If we are able to interpret the causal diagram as an L3

CTFBN, we can leverage the local constraints and infer that the effect of the treatment on the treated
(ETT) is also the observational correlation (i.e. P (yx|x→) = P (y|x)).
Another observation from this example is that as we move to graphical models in higher layers,
the assumptions become richer and stronger. To verify stronger assumptions, it requires higher
experimental capabilities so that the agent can obtain data corresponding to distributions in the
assumptions set. However, such capabilities may not always be available. For example, consider
the L2 constraint P (y|do(x)) = P (y), if intervention on X is not feasible in the system, then
it is not possible to verify it empirically. The assumptions in L3 are even more demanding. For
example, verifying the constraint P (yx, y→x→ , x→→) = P (yx, y→x→)P (x→→) requires access to data from
the counterfactual distribution P (Yx, Yx→ , X), which cannot be obtained through standard Fisherian
randomization.

In the following sections, we give the definitions and examples for graphical models introduced in
previous works ([14, 15, 2, 6]).

A.2 L1: Bayesian Networks

The first graphical model encodes invariance constraints in the observational distributions. Firstly, we
formally define how to construct a graph from an SCM.
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Figure 8: SCM Induced DAG or Causal Diagrams

Definition 13 (Confounded Component of an SCM [2]). Given an SCM M = ↓U,V,F , P (u)↔,
let Uc

1,U
c
1, ...,U

c
l ↗ U be disjoint maximal subsets of the exogenous variables in M such that

P (u) =
∏l

k=1 P (Uc
k). Then, we say that Vi, Vj ↑ V are in the same confounded component (for

short, C-component) of M if |{Uc
k|Uc

k →Ui ⇒= ↖,Uc
k →Uj ⇒= ↖}| > 0, that is, if fi and fj have

both latent arguments in some common Uc
k.

Definition 14 (SCM-induced DAG [2]). Consider an SCM M = ↓U,V,F , P (u)↔. Then G is a
DAG induced by M if it:

• has a vertex for every endogenous variable in the set V

• has an edge Vi ′≃ Vj for every Vi, Vj ↑ V if Vi appears as an argument of fj

• there exists an order over the functions in F such that for every pair Vi, Vj in the same C-
component of M such that fi < fj , the edge Vi ′≃ Vj and the edges Vk ′≃ Vj , Vk ↑ Pai
are in G.

Definition 15 (Markov Relative to [14]). A probability distribution P (V) over a set of observed
variables V is said to be Markov relative to a graph G if:

P (V) =
∏

i

P (vi|pai) (48)

where Pai = {Vj ↑ V|(Vj ≃ Vi) ↑ G}.
Definition 16 (Bayesian Network [14]). A directed acyclic graph (DAG) G is a Bayesian Network
for a probability distribution P over the variables in V if P is Markov relative to G.

Example 9 (SCM-induced BN). Consider the SCM M = ↓U = {Uz, Ux, Uy},V =
{Z,X, Y },F , P (u)↔ where

F =






Z ⇑ Uz

X ⇑ Z ∋ Ux

Y ⇑ Z ∞ Uy

(49)

P (u) : Uz ∈ Bernoulli(0.5), Ux ∈ Bernoulli(0.5), Uy ∈ Bernoulli(0.5) (50)

Its SCM-induced DAG is shown in Fig. 8(a) and its induced observational distribution P (v) satisfies:

P (v) = P (z)P (x|z)P (y|z) (51)

for all x, y, z in V al(X)△ V al(Y )△ V al(Z). The DAG in Fig. 8(a) is a BN for P (v).

A.3 L2: Causal Bayesian Networks

The second graphical model encodes invariance constraints in the interventional distributions.
Definition 17 (CBN Markovian [2]). Let P↑ be the collection of all interventional distributions
P (V|do(x)),X ↗ V,x ↑ V al(X), including the null intervention, P (V), where V is the set of
observed variables. A directed acyclic graph G is called a Causal Bayesian Network for P↑ if:

1. [Markov] P (V)|do(x) is Markov relative to G;

2. [Missing-link] For every Vi ↑ V, Vi ⇒↑ X such that there is no arrow from X to Vi in G:

P (vi|do(pai), do(x)) = P (vi|do(pai)) (52)
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3. [Parents do/see] For every Vi ↑ V, Vi ⇒↑ X:

P (vi|do(pai), do(x)) = P (vi|pai, do(x)) (53)

Example 10 (SCM-induced CBN Markovian). Consider the SCM from Example 9. Its induced
causal diagram is shown in Fig. 8(a) and its induced set of interventional distributions P↑ satisfy:

1. [Markov]

P (v) = P (z)P (x|z)P (y|z) (54)
P (v|do(x)) = P (z|do(x))P (y|z, do(x)) (55)
P (v|do(y)) = P (z|do(y))P (x|z, do(y)) (56)
P (v|do(z)) = P (x|do(z))P (y|do(z)) (57)

2. [Missing-link]

P (x|do(y, z)) = P (x|do(z)) (58)
P (y|do(x, z)) = P (y|do(z)) (59)
P (z|do(a)) = P (z), ↙a ↗ {x, y} (60)

3. [Parents do/see]

P (x|do(z)) = P (x|z) (61)
P (x|do(y, z)) = P (x|z, do(y)) (62)

P (y|do(z)) = P (y|z) (63)
P (y|do(x, z)) = P (y|z, do(x)) (64)

The causal diagram in Fig. 8(a) is a CBN Markovian for P↑.
Definition 18 (Confounded Component [23]). Let C1,C2, ...Ck be a partition over the set of
variables V, where Ci is said to be a confounded component (for short, C-component) of G if for
every Vi, Vj ↑ Ci there exists a path made entirely of bidirected edges between Vi and Vj in G and
Ci is maximal.
Definition 19 (Augmented Parents). Let < be a topological order over the variables V1, ..., Vn

in G, let G(Vi) be the subgraph of G consists only of variables in V1, ..., Vi, and let C(Vi) be the
C-component of Vi in G(Vi). The augmented parents of Vi, denoted as Pa+i , is the union of parents
of all variables in C(Vi) that comes before Vi in topological order:

Pa+i = ⇔j|Vj↓Ti
Paj\{Vi} (65)

where Ti = {X ↑ C(Vi) : X ∝ Vi}.

We use GX to denote the mutilated graph with all incoming edges to X removed from G. The
augmented parent of Vi in GX is denoted Pax+i .
Example 11 (Augmented Parents). Consider the SCM M = ↓U = {Uz, U},V =
{Z,X, Y },F , P (u)↔ where

F =






Z ⇑ Uz

X ⇑ Z ∋ U
Y ⇑ X ∞ U

(66)

P (u) : Uz ∈ Bernoulli(0.5), U ∈ Bernoulli(0.5) (67)

The causal diagram G it induces is shown in Fig. 8(b). The respective augmented parents of X,Y, Z
in G are:

Pa+z = {} (68)
Pa+x = {Z} (69)
Pa+y = {X,Z} (70)
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If we consider the induced subgraph G(Y, Z) where there are no edges at all, it is the same graph as
GX . In this graph, nodes Y and Z form their own c-components respectively, so their augmented
parents are both empty:

Pax+z = {} (71)
Pax+y = {} (72)

Definition 20 (Semi-Markov Relative to [2]). A probability P (V) is said to be semi-Markov relative
to a graph G if for any topological order < of G:

P (V) =
∏

i

P (vi|pa+i ) (73)

Definition 21 (CBN Semi-Markovian [2]). Let P↑ be the collection of all interventional distributions
P (V|do(x)),X ↗ V,x ↑ V al(X), including the null intervention, P (V), where V is the set of
observed variables. A directed acyclic graph G is called a Causal Bayesian Network for P↑ if,
considering Pax+i in all compatible topological orders over V:

1. [Semi-Markov] P (V|do(x)) is semi-Markov relative to G;

2. [Missing directed-link] For every Vi ↑ V\X, W ↗ V\(Pax+i ⇔X ⇔ {Vi}):

P (vi|do(x), pax+i , do(w)) = P (vi|do(x), pax+i ) (74)

3. [Missing bidirected-link] For every Vi ↑ V\X, let Pax+i be partitioned into two sets of
confounded and unconfounded parents, Paci and Paui in Gx::

P (vi|do(x), paci , do(paui )) = P (vi|do(x), paci , paui ) (75)

Example 12 (SCM-induced CBN Semi-Markovian). Consider the SCM from Example 11. Its
induced causal diagram is shown in Fig. 8(b) and its induced set of interventional distributions P↑
satisfy:

1. [Semi-Markov]

P (v) = P (z)P (x|z)P (y|x, z) (76)
P (v|do(x)) = P (z|do(x))P (y|do(x)) (77)
P (v|do(y)) = P (z|do(y))P (x|z, do(y)) (78)
P (v|do(z)) = P (x|do(z))P (y|x, do(z)) (79)

2. [Missing directed-link]

P (x|z, do(y)) = P (x|z) (80)
P (x|do(z), do(y)) = P (x|do(z)) (81)
P (y|do(x), do(z)) = P (y|do(x)) (82)

P (z|do(a)) = P (z), ↙a ↗ {x, y} (83)

3. [Missing bidirected-link]

P (x|do(z)) = P (x|z) (84)
P (x|do(y, z)) = P (x|z, do(y)) (85)
P (y|x, do(z)) = P (y|x, z) (86)

The causal diagram in Fig. 8(b) is a CBN Semi-Markovian for P↑.

A.4 L3: Counterfactual Bayesian Networks

If we climb further up the PCH, we get another graphical model that encodes structural constraints in
the counterfactual distributions.
Definition 22 (CTFBN Markovian [6]). A directed acyclic graph G is a Counterfactual Bayesian
Network for P# if:
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1. [Independence Restrictions] Let W↑ be a set of counterfactuals of the form Wpaw
, then

P (W↑) factorizes as

P (
∧

Wpaw↓W↑

Wpaw) =
∏

V ↓V(W↑)

P (
∧

Wpaw |W↓V(W↑)

Wpaw) (87)

2. [Exclusion Restrictions] For every variable Y ↑ V with parents Pay, for every set
Z ↗ V\(Pay ⇔ {Y }), and any counterfactual set W↑, we have

P (Ypay,z,W↑) = P (Ypay
,W↑) (88)

3. [Local Consistency] For every variable Y ↑ V with parents Pay, let X ↗ Pay, then for
every set Z ↗ V\(X ⇔ {Y }), and any counterfactual set W↑, we have

P (Yz = y,Xz = x,W↑) = P (Yxz = y,Xz = x,W↑) (89)

Example 13 (SCM-induced CTFBN Markovian). Consider the SCM from Example 9. Its induced
causal diagram is shown in Fig. 8(a) and its induced set of counterfactual distributions P# satisfy:

1. [Independence Restrictions]

P (z, xz, x
→
z→ , yz→→ , y→z→→→) = P (z)P (xz, x

→
z→)P (yz→→ , y→z→→→) (90)

2. [Exclusion Restrictions]

P (xyz,w↑) = P (xz,w↑) (91)
P (yxz,w↑) = P (yz,w↑) (92)
P (za,w↑) = P (z,w↑), ↙a ↗ {x, y} (93)

3. [Local Consistency]

P (x, z) = P (xz, z) (94)
P (xy, zy) = P (xyz, zy) (95)
P (y, z) = P (yz, z) (96)

P (yx, zx) = P (yxz, zx) (97)

The causal diagram in Fig. 8(a) is a CTFBN Markovian for P#.
Definition 23 (CTFBN Semi-Markovian [6]). A directed acyclic graph G is a Counterfactual
Bayesian Network for P# if:

1. [Independence Restrictions] Let W↑ be a set of counterfactuals of the form Wpaw
, C1, ...,Cl

the c-components of G[V(W↑)], and C1↑, ...,Cl↑ the corresponding partition over W↑.
Then P (W↑) factorizes as

P (
∧

Wpaw↓W↑

Wpaw) =
l∏

j=1

P (
∧

Wpaw↓Cj↑

Wpaw) (98)

2. [Exclusion Restrictions] For every variable Y ↑ V with parents Pay, for every set
Z ↗ V\(Pay ⇔ {Y }), and any counterfactual set W↑, we have

P (Ypay,z,W↑) = P (Ypay
,W↑) (99)

3. [Local Consistency] For every variable Y ↑ V with parents Pay, let X ↗ Pay, then for
every set Z ↗ V\(X ⇔ {Y }), and any counterfactual set W↑, we have

P (Yz = y,Xz = x,W↑) = P (Yxz = y,Xz = x,W↑) (100)

Example 14 (SCM-induced CTFBN Semi-Markovian). Consider the SCM from Example 11. Its
induced causal diagram is shown in Fig. 8(b) and its induced set of counterfactual distributions P#

satisfy:
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1. [Independence Restrictions]

P (z, xz, x
→
z→ , yx→→ , y→x→→→) = P (z)P (xz, x

→
z→ , yx→→ , y→x→→→) (101)

2. [Exclusion Restrictions]

P (xyz,w↑) = P (xz,w↑) (102)
P (yxz,w↑) = P (yx,w↑) (103)
P (za,w↑) = P (z,w↑), ↙a ↗ {x, y} (104)

3. [Local Consistency]

P (x, z) = P (xz, z) (105)
P (xy, zy) = P (xyz, zy) (106)
P (y, x) = P (yx, x) (107)

P (yz, xz) = P (yxz, xz) (108)

The causal diagram in Fig. 8(b) is a CTFBN Semi-Markovian for P#.

A.5 Counterfactual Randomization

Counterfactual randomization is an experimental procedure that allows an agent to access the value
of variable before an intervention takes effect [3]. For example, the doctor may be able to learn the
patient’s natural choice of drug before randomly assigning a treatment to the patient in a clinical trial.
The formal definition of this action in an SCM is given below.
Definition 24 (Counterfactual (ctf-) Randomization (Def. 2.3 [19])). CTF-RAND(X ≃ C)(i): fixing
the value of X as an input to the mechanisms generating C ↗ Ch(X) using a randomising device
having support over Domain(X), for unit i, where Ch(X) stands for the set of variables that take X
as an argument in their mechanisms.

The implementation of counterfactual randomization can be achieved under certain structural condi-
tions, like when electroencephalogram recordings are available to measure a unit’s natural decision
while simultaneously intervening on the actual decision [3], or when counterfactual mediators are
present to change how children of X perceive it [19]. Whether counterfactual randomization can be
performed depends on the specific experimental settings.

By including the counterfactual randomization action into our experimental toolkit, we obtain the
action set that gives the agent the most granular experimental capabilities.
Definition 25 (Maximal Feasible Action Set (SCM) [19]). Given an SCM M = ↓U,V,F , P (u)↔.
The maximal feasible action set A†(M) is the set of all actions the agent can perform in M with the
most granular interventional capabilities:

(i) SELECT(i): randomly choosing, without replacement, a unit i from the target population, to
observe in the system;

(ii) READ(V )(i), ↙V ↑ V: measuring the way in which a causal mechanism fV ↑ F has
physically affected unit i, by observing its realised feature V (i);

(iii) RAND(X)(i), ↙X ↑ V: erasing and replacing i’s natural mechanism fX for a decision
variable X with an enforced value drawn from a randomising device having support over
Domain(X);

(iv) CTF-RAND(X ≃ C)(i), ↙X, ↙C ↑ Ch(X): fixing the value of X as an input to the
mechanisms generating C ↑ Ch(X) using a randomising device having support over
Domain(X), for unit i, where Ch(X) stands for the set of variables that take X as an
argument in their mechanisms.

SELECT with READ correspond to random sampling. When SELECT and READ are permitted
over all units and variables, all distributions in L1 are realizable. Adding RAND to the action set
gives the agent the ability to perform randomized experiments. When SELECT, READand RAND
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are permitted over all units and variables, all distributions in L2 are realizable. With CTF-RAND,
some distributions in L3 also become realizable. These distributions are the ones that lie within PL2.25

and PL2.5 . If we can perform all actions from the maximal feasible action set in an environment, we
are able to draw samples from any distributions in PL2.5 .

B Details on Languages for L2.25 and L2.5

B.1 Nested Counterfactuals

The counterfactual variables in the symbolic representation of L2.25 and L2.5 are all of the form Yx,
where the subscript x indicates that an intervention do(X = x) has been performed in the system.
There is another type of counterfactual variables which represents interventions like do(X = Xz),
where the variable X is set to behave as another counterfactual variable, say Xz. A random variable
Y in such a system is represented with a counterfactual of the form YXz , which is called a nested
counterfactual.

All nested counterfactuals can be unnested via the Counterfactual Unnesting (CUT) process below
and be transformed into non-nested ones.
Corollary 1 (Counterfactual Unnesting (CUT) [5]). Let Y,X ↑ V,T,Z ↗ V, and let z be a set of
values for Z. Then,the nested counterfactual P (YT↑Xz = y) can be written with one less level of
nesting as:

P (YT↑Xz = y) =
∑

x

P (YT↑x = y,Xz = x) (109)

X Y

Z

Figure 9: Causal Dia-
gram: path X ≃ Y rep-
resents the Natural Direct
Effect (NDE)

Given a nested counterfactual, to determine if it belongs to L2.25 and L2.5,
we need to check if the unnested expression contains only distributions
that belong to L2.25 and L2.5.
Definition 26 (Nested Counterfactuals in L2.25/L2.5). We say that a
nested counterfactual is in L2.25/L2.5 if and only if there exists a sequence
of applications of the CUT procedure that reduces it to a function of
unnested counterfactuals in L2.25/L2.5.
Example 15 (Natural Direct Effect (NDE)). Consider the causal diagram
in Fig. 9. The natural direct effect from X to Y can be written in
counterfactual language as

NDEx,x→(y) = P (yx→,Zx)′ P (yx) (110)

The first term is a nested counterfactual, and we can derive its unnested expression by applying CUT.

P (yx→,Zx) =
∑

z

P (yx→z, zx) (111)

From this unnested expression, we can conclude that it is in L2.5 as P (Yx→z, Zx) satisfies the
conditions in Def. 2. However, it is not in L2.25 due to the conflicting subscript x and x→ in the two
counterfactual variables joint.

B.2 Examples for L2.25 and L2.5

Def. 1 and Def. 2 can be viewed as the template to enumerate distributions in L2.25 and L2.5. The
key difference between the two layers is that L2.25 is indexed by specific interventional values, while
L2.5 is indexed by interventional variables. This difference is illustrated in Example 1 where different
value assignments for the interventional variable set X is allowed in L2.5 but not in L2.25. We further
illustrate this difference in another example below.
Example 16 (Difference in Indexing between L2.25 and L2.5). Consider the SCM from Example 11
where the variables V = {Z,X, Y } form a chain Z ≃ X ≃ Y topologically. Let the interventional
variable set be {Y }.

• For L2.25, it is indexed by a specific interventional value. So we need to fix the value
assignment of Y to be y ↑ V al(Y ). Then by Def. 1, P (Zy, Xy, Y ), where Z and X share
the same subscript, is a distribution in L2.25.
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Figure 10: Differences in how intervention on X affects downstream variables in L2, L2.25 and L2.5

• For L2.25, the interventional variable can take any value in its domain unless it is con-
strainted by Cond. (ii) of Def. 2 when two variables are descendants of the same child of
an intervened value. In this example, Z and X are not in descendants of Y . As a result,
there is no constraint on value assignment to Y for Z and X . Taking any y, y→ ↑ V al(Y ),
P (Zy, Xy→ , Y ) is a distribution in L2.5.

This example shows that the increased flexibility of indexing in L2.5 compared to L2.25 allows it to
include more distributions.

Cond. (i) of Def. 1 and Def. 2 ensures that all variables in the intervention set must appear at least
once as subscript in the counterfactuals joint. This avoids any redundant symbolic representation to
appear during the enumeration of distributions in the languages, as illustrated in example below.
Example 17 (Cond. (i) of Def. 1 and Def. 2). Consider the same SCM from Example 11 where
the variables V = {Z,X, Y } form a chain Z ≃ X ≃ Y topologically. Given two interventional
variable sets ↖ and {Y }.

The empty interventional set gives the distribution P (Z,X, Y ), where all subscripts are empty.
This is consistent with our understanding that empty intervention is equivalent to observation.
For the interventional variable set {Y }, if Cond. (i) is not imposed, P (Z,X, Y ) would also be
compatible with the symbolic representation for distributions in these layers. This means that the
same distribution is repetitively enumerated under different interventional variable sets. To avoid this
redundancy, we impose Cond. (i) to require the union of all subscripts to cover the interventional
variable set. In other words, y must appear as a subscript in at least one of the counterfactuals joint.
As a result, the enumeration would not produce P (Z,X, Y ), but rather, produces distributions like
P (Zy, X, Y ), P (Z,Xy, Y ) or P (Zy, Xy, Y ) for L2.25, and also P (Zy, Xy→ , Y ) for L2.5.

Cond. (ii) of Def. 1 and Def. 2 reflects how counterfactual randomization enforces consistent values
over downstream variables. For L2.25, counterfactual randomization on variable X is restrained such
that all children of X shares the same value x. As a result, all descendants of X share the same value
x. In contrast, counterfactual randomization in L2.5 allow each child of X to interpret X differently.
Yet, given that counterfactual randomization cannot bypass a child to affect descendants directly, it
still imposes a consistent value constraint over the descendants of X . This constraint starts at the
children of X , instead of at X itself.
Example 18 (Cond. (ii) of Def. 1 and Def. 2). Consider the causal diagram in Fig. 4(a) and the
intervention on X . In L2, the submodel fixes X = x and we obtain the distribution P (Y, Z|do(x)).
In L2.25, all downstream variables of X must include x in its subscript, i.e., Yx, Zx. At the same time,
counterfactual randomization allows us to join the natural value of X with the other counterfactual
variables and obtain the distribution P (X,Yx, Zx). In L2.25, the downstream variable consistency
is only enforced at the child level. In this example, different subscripts of X for Y and Z are allowed
and we obtain the distribution P (X,Yx, Zx→). The difference between the three layers are illustrated
graphically in Fig. 10.

C Details on Models and Inferential Machinery

C.1 Details on CBN2.5

In this section, we give the detailed definition and theorem for CBN2.5.
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Definition 27 (CBN2.5 Semi-Markovian). Given a mixed graph G and let PL2.5 be the collection of
all L2.5 distributions. G is a Causal Bayesian Network 2.5 for PL2.5 if:

1. [Independence Restrictions] Let W↑ be a set of counterfactuals of the form Wpaw
with

distinct W , C1, ...,Cl the c-components of G[V(W↑)], and C1↑, ...,Cl↑ the corresponding
partition over W↑ such that P (W↑) ↑ PL2.5 . Then P (W↑) factorizes as

P (
∧

Wpaw↓W↑

Wpaw) =
l∏

j=1

P (
∧

Wpaw↓Cj↑

Wpaw) (112)

2. [Exclusion Restrictions] For every variable Y ↑ V with parents Pay, for every set
Z ↗ V\(Pay ⇔ {Y }), and any counterfactual set W↑ such that P (Ypay,z,W↑) ↑ PL2.5 ,
we have

P (Ypay,z,W↑) = P (Ypay
,W↑) (113)

3. [Local Consistency] For every variable Y ↑ V with parents Pay, let X ↗ Pay, then for
every set Z ↗ V\(X ⇔ {Y }), and any counterfactual set W↑ such that P (Yxz = y,Xz =
x,W↑) ↑ PL2.5 , we have

P (Yz = y,Xz = x,W↑) = P (Yxz = y,Xz = x,W↑) (114)

Theorem 5 (L2.5-Connection — CBN2.5 (Markovian and Semi-Markovian)). The Causal diagram
G induced by the SCM M following the constructive procedure in Def. 11 is a CBN2.5 for PL2.5 , the
collection of all L2.5 distributions induced by M.
Example 19 (CBN2.5). Consider the SCM from Example 1.

The Causal Diagram is induces is shown in Fig. 4(a) and the collection of realizable distributions
PL2.5 it induces satisfies the following constraints:

1. [Independence Restrictions]

P (X,Yx, Zx→) = P (X)P (Yx)(Zx→) (115)

2. [Exclusion Restrictions]

P (Xa = x,W↑) = P (X = x,W↑),a ↗ {z, y} (116)
P (Yxz = y,W↑) = P (Yx = y,W↑) (117)
P (Zxy = z,W↑) = P (Zx = z,W↑) (118)

3. [Local Consistency]

P (Y = y,X = x) = P (Yx = y,X = x) (119)
P (Yz = y,Xz = x) = P (Yzx = y,Xz = x) (120)
P (Z = z,X = x) = P (Zx = z,X = x) (121)
P (Zy = z,Xy = x) = P (Zyx = z,Xy = x) (122)

C.2 Graphical Criterion for Distributions in L2.5

We reproduce the sound and complete graphical criterion for checking a distribution is in L2.5 from
[19] below.
Definition 28 (Ancestors of a Counterfactual[5]). Given a potential response Yx with Y ↑ V,X ↗ V,
the set of counterfactual ancestors of Yx, denoted by An(Yx)), consist of each Wz such that W ↑
An(Y )Gx\X (which includes Y itself), and z = x → An(W )Gx . For a set of counterfactuals W↑,
An(W↑) is defined to be the union of the ancestors of each potential response in the set.
Lemma 2 (Corollary 3.7 in [19]). Given a causal diagram G, an L3-distribution Q = P (W↑) is
in maximally realizable distributions induced by any SCM compatible with a given graph G if and
only if the ancestor set An(W↑) does not contain a pair of potential responses Ws,Wt of the same
variable W under different regimes where s ⇒= t.
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Example 20. Consider the causal diagram in Fig. 4(a), we check if P (Zx, Yx→) is in the L2.5

distributions induced by SCMs compatible with it.

• An(Zx) = {Zx}

• An(Yx→) = {Yx→}

Applying Lemma 2, we conclude that P (Zx, Yx→) is in the L2.5 distributions.

C.3 Independence Constraints and AMWN

The independence rule in ctf-calculus requires the construction of another graphical object, known as
the Ancestral Multi-World Network (AMWN). We reproduce the algorithm for AMWN construction
and the theorem stating its soundness.

Algorithm 1 AMWN-CONSTRUCT(G,W↑)
Input: Causal Diagram G and a set of counterfactual variables W↑
Output: GA(W↑), the AMWN constructed from G and W↑

1: Initialise G→ by adding variables in An(W↑) together with the directed arrows witnessing the
ancestrality

2: for each node V ↑ V appearing more than once in G→ do
3: Add a node UV and an edge UV ≃ Vx for every instance Vx of V .
4: end for
5: for each bidirected V ↫↬↬↬↬⊜ W where V and W are in G→ do
6: Add a node UVW and edges from it to Vx and Wx for every instance Vx of V or Wx of W

in G→.
7: end for

return G→.

Theorem 6 (L3 Independence Constraints – Counterfactual d-separation). (Theorem 1 in [5])
Consider a causal diagram G and a collection of counterfactual distributions, PL3 , induced by the
SCM associated with G. For counterfactual variables Xt, Yr,Z↑,

(↘Xt↘ ⇓⇓ ↘Yr↘ | ↘Z↑↘)GA =▽ (↘Xt↘ ⇓⇓ ↘Yr↘ | ↘Z↑↘)PL3 (123)

In words, if ↘Xt↘ and ↘Yr↘ are d-separated given ↘Z↑↘ in the diagram GA(Xt, Yr,Z↑), then ↘Xt↘
and ↘Yr↘ are independent given ↘Z↑↘ in every distribution PL3 compatible with the causal diagram
G.

When adapting ctf-calculus to CBN2.25 and CBN2.5, there is an extra step to ensure that the
distributions belong to the corresponding layers. This can be added as an extra step before Step 1 of
Alg. 1 to check that:

• CBN2.25: CRS(W↑) satisfies Lemma 1
• CBN2.5: An(W↑) satisfies Lemma 2

The same check applies to the other two rules of ctf-calculus too.

D Discussion on Hierarchy of Graphical Models

In this section, we offer further insights into the hierarchy of graphical models by examining (a)
the set of compatible SCMs and (b) the action sets required to render their encoded constraints
empirically falsifiable.

D.1 Hierarchy of SCMs compatible with Graphs

Given a causal diagram G and the set of constraints it encodes, it can be viewed as a representation of
an equivalence class of SCMs that induce distributions that are compatible with these constraints. We
formally define this notion of compatibility below.
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Definition 29 (SCM compatible with G on Li). Given a causal diagram G, an SCM M is said to be
compatible with G on Li, if all constraints encoded by G, when interpreted as a graphical model on
Li hold in the Li distributions induced by M.
Example 21. Consider the causal diagram G in Fig. 8 (c).

• When G is interpreted as an L1 model, it encodes no constraints. As a result, any SCM with
an endogenous variable set consisting of two variables is compatible with G on L1. For
example, all five SCMs from Example 22 are compatible with G on L1.

• When G is interpreted as an L2 model, it encodes the following constraints:

P (y|do(x)) = P (y|x) (124)
P (x|do(y)) = P (x) (125)

(126)

Thus, any SCM compatible with G on L2 must induce a collection of interventional distri-
butions that satisfy these constraints. For example, SCMs M(1),M(2)↑ and M(3)↑ from
Example 22 are all compatible with G on L2. However, SCMs M(2) and M(3) from Example
22 do not satisfy these constraints and are therefore not compatible with G on L2.

The example above provides a glimpse of how the set of SCMs compatible with a causal diagram
shrinks as we transition from L1 to L2. In fact, this property generalizes across all layers: as we move
to higher layers, additional constraints are imposed, further restricting the set of compatible SCMs.

D.2 Hierarchy of Constraints from Realizability

Another way to compare graphical models across different layers is by analyzing the empirical
falsifiability of the constraints they encode. The falsifiability of a constraint does not depend on
the way it is encoded in a particular model, but rather on the realizability of the distributions
involved. In particular, a constraint is empirically falsifiable only if the agent has the experimental
capability to sample from all distributions that appear in the constraint. Therefore, the hierarchy of
graphical models can be understood by examining the action sets required to make the corresponding
distributions realizable at each layer.

Based on the results from [19], we know that

• With the first three actions from the maximal feasible action set, we can access all distribu-
tions in PL2 , which allows us to empirically test all constraints encoded by a CBN.

• With all four actions from the maximal feasible action set, we can access all distributions in
PL2.5 , which allows us to empirically test all constraints encoded by a CBN2.5.

The ability for an agent to perform the counterfactual randomization action allows us to access
distributions that lie between L2 and L2.5. As discussed earlier, the counterfactual randomization
action needed to obtain L2.25 restricts all children to have the same value. It is clear that the action
set to realize L2.25 lie between L2 and L2.5.

From the definitions of action sets, we observe a hierarchical structure in the feasible actions an agent
can perform to access distributions at different layers, as illustrated in Fig. 11. Specifically, the action
set for PL2 is a subset of the action set for PL2.25 , which in turn is a subset of the action set for
PL2.5 . This hierarchy of action sets further reinforces the hierarchical structure of distributions from
the perspective of realizability.

For L3 distributions that lie outside PL2.5 , there is currently no known experimental procedure to sam-
ple from them. This is related to discussions about some independence constraints in CTFBN being
never empirically falsifiable because they are cross-world constraints [20]. While we acknowledge
the validity of this claim, we emphasize that the difference in empirical testability between constraints
in CBN2.25 and CTFBN does not arise from whether the constraints are cross-world. Instead, it
stems from the set of actions permitted to access the counterfactual variables. For instance, the ETT
distribution P (Yx = y|X = x→) in PL2.25 is technically a ‘cross-world’ quantity, as Yx is derived
from the interventional regime Mx, while X originates from the natural regime M. However, under
the assumption that FFRCISTG randomization on X is a valid action within the system – allowing
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Figure 11: Hierarchy of action sets to realize distributions in different layers

observation of the X’s value before the intervention takes effect – constraints involving the ETT
distribution can be empirically falsifiable.

To highlight its practical implications, the falsifiability of a constraint depends on whether we can
access the distributions it is defined on, and the realizability of these distributions hinges on the set
of physical actions available to the agent in the environment. Therefore, it is crucial for researchers
to understand the limitations of their actions when assessing whether the assumptions they make
can be justified through experiments or expert knowledge. Researchers who prioritize empirically
testable assumptions can choose a graphical model from the hierarchy that encodes only falsifiable
constraints based on the available actions. Conversely, those willing to incorporate assumptions
based on background knowledge can do so with a clear understanding of which constraints remain
untested given the permissible actions. In summary, graphical models are tools, and the realizability
of the distributions underlying the constraints they encode is one of many important criteria that helps
researchers assess their appropriateness for specific applications.

E Other Graphical Models

Another graphical model inducing constraints in PL2.25 is the Fully Randomized Causally Inter-
pretable Structured Tree Graphs (FFRCISTG) [21, 20]. We denote the diagram used in this model as
the FFRCISTG diagram. The difference between CBN2.25 and FFRCISTG stems from the diagram
construction process: while an FFRCISTG diagram adds a bidirected edge between variables only
when they share a common latent confounder, a causal diagram also includes a bidirected edge
between two variables when there is a nonzero correlation between their latent parents.
Definition 30 (FFRCISTG Diagram (Semi-Markovian Models)). Consider an SCMF M =
↓U,V,F , P (u)↔. Then GF is an FFRCISTG diagram of M if constructed as follows:

• add a vertex for every endogenous variable in the set V

• add an edge Vi ′≃ Vj for every Vi, Vj ↑ V if Vi appears as an argument of fj

• Add a bidirected edge Vi ↫↬↬↬↬⊜ Vj for every Vi, Vj ↑ V if the corresponding functions
fi, fj share some common U ↑ U as an argument.

Based on the definition of FFRCISTG, it also encodes independence constraints based on the c-
components of the graph [20],. However, given the difference in graph construction, FFRCISTG
models do not cover the whole space of SCMs as it requires a special property on the exogenous
distribution.
Definition 31 (SCMF ). Consider an SCM M = ↓U,V,F , P (u)↔, it is an SCMF if it satisfies the
following constraint:
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Figure 12: Space of SCMs over 2 variables X,Y .

• for every two variables X,Y ↑ V such that their corresponding functions fx, fy do not
share any common U ↑ U as an argument, Ypay ⇓⇓ Xpax must hold in PM

F , the collection
of counterfactual distributions it induces. I.e. P (u) must satisfy:

∑

u

1[Xpax(u) = x̸Ypay (u) = y]P (u) =

[∑

u

1[Xpax(u) = x]P (u)

][∑

u

1[Ypay (u) = y]P (u)

]

(127)

We denote the subspace of all SCMF by !F .
Theorem 7 (FF-Connection — SCM FFRCISTG (Semi-Markovian)). The FFRCISTG diagram GF

induced by an SCM M following the constructive procedure in Def. 30 is an FFRCISTG for PL2.25 ,
the collection of L2.25 distributions induced by M, if and only if M is an SCMF .

Proof. The proof is the same as Theorem. 1, with the extra constraint on P (u) in SCMF ensuring
that independence constraints hold between variables without bidirected edges.

To understand the difference between CBN2.25 and FFRCISTG, we zoom in to the space of !F and
compare the structural constraints encoded in FFRCISTG diagram versus causal diagram. First, we
examine the space of SCMs over 2 variables. All SCMs with V = {X,Y } can be partitioned into 3
subsets, as shown in Fig. :

• !(1): SCMs with no latent confounding (i.e. Ux → Uy = ↖), and Ux ⇓⇓ Uy

• !(2): SCMs with no latent confounding (i.e. Ux → Uy = ↖), but Ux ⇓⇒⇓ Uy

• !(3): SCMs with latent confounding (i.e. Ux → Uy ⇒= ↖)

Within !(2) and !(3), there are two subsets of SCMs such that weak ignorability holds from the
parametrization of Ux, Uy:

Yx ⇓⇓X, ↙x ↑ V al(X) (128)

We denote them as !(2)↑ and !(3)↑.

The following example provides a collection of sample SCMs falling within each subset.
Example 22.

M(1) ↑ !(1) : M(2) ↑ !(2) : M(3) ↑ !(3) :

V = {X,Y } V = {X,Y } V = {X,Y }
U = {Ux, Uy} U = {Ux, Uy, U} U = {Ux, Uy}

F =

{
X ⇑ Ux

Y ⇑ X ∞ Uy
F =

{
X ⇑ Ux

Y ⇑ X ∋ Uy
F =

{
X ⇑ U ∞ Ux

Y ⇑ (X ∞ U) ∋ Uy

P (u) :

{
Ux ∈ Bernoulli(0.7)
Uy ∈ Bernoulli(0.5)

P (u) :






Ux ∈ Bernoulli(0.6)
Uy|Ux = 1 ∈ Bernoulli(0.7)
Uy|Ux = 0 ∈ Bernoulli(0.3)

P (u) :






Ux ∈ Bernoulli(0.7)
Uy ∈ Bernoulli(0.5)
U ∈ Bernoulli(0.2)
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M(2)↑ ↑ !(2)↑ : M(3)↑ ↑ !(3)↑ :

V = {X,Y } V = {X,Y }
U = {Ua, Ub, Ux, Uy} U = {Ux, Uy, U}

F =






X ⇑ Ua ∞ Ux

Y ⇑
{
Ub ∞ Uy if X = 0
Uy if X = 1

F =






X ⇑ U ∞ Ux

Y ⇑
{
U ∞ Uy if X = 0
Uy if X = 1

P (u) :






Ux ∈ Bernoulli(0.7)
Uy ∈ Bernoulli(0.5)
Ua ∈ Bernoulli(0.5)
Ub = Ua

P (u) :






Ux ∈ Bernoulli(0.7)
Uy ∈ Bernoulli(0.5)
U ∈ Bernoulli(0.5)

These models correspond to the ones shown in Fig. 12.

• M(1) ↑ !(1) is a Markovian SCM with no latent confounders and independent exogenous
variables.

• M(2) ↑ !(2) is an SCM with no latent confounding between the endogenous variables
but the error terms are correlated. This correlation induces correlation among the coun-
terfactual variables which results in no constraints in P#. This model cannot induce any
FFRCISTG given it does not satisfy the condition in Def. 31.

• M(3) ↑ !(3) is an SCM with latent confounding between the two endogenous variables, but
no constraint holds. The causal diagram and FFRCISTG diagram have a bidirected edge.

• M(2)↑ ↑ !(2)↑ is an SCM with no latent confounders but have non-zero correlation
between the error terms. It induces the constraint Yx ⇓⇓X, ↙x ↑ V al(X) in P# from the
parametrization of the functions. This model induces a Causal Diagram with bidirected
edge from the correlated error terms, while the FFRCISTG diagram it induces does not
have any bidirected edge.

• M(3)↑ ↑ !(3)↑ is an SCM with latent confounding between the two endogenous variables.
However, due to the parametrization, the constraint Yx ⇓⇓X, ↙x ↑ V al(X) still holds. The
causal diagram and FFRCISTG diagram it induces are the same with a bidirected edge
between the variables.

Given an SCM in each subset, we can construct the FFRCISTG diagram and the causal diagram it
induces following Def. 30 and Def. 11. The results are summarized in Table 2, and we state four key
observations from the table:

1. SCMs in !(2)\!(2)↑ fall outside !F and do not satisfy Theorem 7.
• The FFRCISTG diagram induced by any SCM in this subset does not include a

bidirected edge between X and Y . However, the L2.25 distributions induced by these
SCMs does not satisfy the ignorability constraint Yx ⇓⇓X . As a result, the absence
of the bidirected edge creates a mismatch between the FFRCISTG diagram and the
L2.25 distribution. In contrast, the causal diagram correctly represent the correlation
between the exogenous parents of X and Y and the correlation between X and Yx with
its bidirected edge.

2. SCMs in !(1), !(2)↑ and !(3)↑ induce the same constraints in the L2.25 distributions PL2.25 ;
and among all these SCMs, those in !(2)↑ ⇔ !(3)↑ have Lebesgue measure zero.

• All SCMs in these subsets induce the same ignorability constraint as given in Equa-
tion (128). SCMs in !(1) naturally satisfy this constraint from the independence of
exogenous parents of X and Y . However, for SCMs in !(2)↑ ⇔ !(3)↑ to induce such
an independence constraint, a specific parametrization of the model is required. This
requirement restricts these models to a set of Lebesgue measure zero.

3. Despite having the same constraints in the L2.25 distributions PL2.25 , SCMs in !(2)↑ and
!(3)↑ induce different FFRCISTG diagrams.
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SCM Space FFRCISTG Diagram Causal Diagram
!(1) X Y X Y

!(2)\!(2)↑ X Y X Y

!(3)\!(3)↑ X Y X Y

!(2)↑ X Y X Y

!(3)↑ X Y X Y

Table 2: Comparison of FFRCISTG Diagrams and Causal Diagrams induced by SCMs over 2
variables. The FFRCISTG diagram highlighted in orange fails to represent the correct constraints
induced by the SCM.

• All SCMs in these two subsets induce the ignorability constraint via parametriza-
tion. However, only the FFRCISTG diagram induced by SCMs in !(2)↑ encode this
constraint.

4. The key difference between FFRCISTG diagram and causal diagram lies in the subset !(2).

• The causal diagram includes a bidirected edge to represent the correlation between
the exogenous parents of X and Y . In contrast, the FFRCISTG diagram omits this
bidirected edge. For SCMs in !(2)↑, the omission correctly encodes the ignorability
constraint. However, for SCMs in !(2)\!(2)↑, where the ignorability constraint do
not hold, the omission results in a mismatch between the FFRCISTG diagram and the
L2.25 distribution.

Several of the points discussed above stem from constraints imposed by the parametrization of
SCMs. To formally differentiate between constraints arising from the topological structure of an
SCM and those resulting from the parametrization of functions or error distributions, we extend
Pearl’s Definition 6.4.2 (Structurally Stable No-Confounding) [15].

Definition 32 (Structurally Stable Constraints). Given a graph G and a collection of distributions
P, and let C denote a constraint in P. We define C as a structurally stable constraint if it holds in
every SCM in the same NPSEM which shares the same functional arguments and dependency among
exogenous variables.

In other words, structurally stable constraints capture functional dependencies between variables in
the SCM, rather than mere probabilistic dependencies. Clearly, the ignorability constraint induced by
SCMs in !(1) is a structurally stable constraint. In contrast, the same constraint induced by SCMs in
!(2)↑ is not structurally stable, as SCMs in !(2)\!(2)↑ belong to the same NPSEM but do not induce
the ignorability constraint. The same argument applies to !(3)↑.

Observation 1 confirms Theorem 7 by presenting additional examples of SCMs that fail to induce an
FFRCISTG model via Def. 30 and Def. 1. Furthermore, it establishes that !F , the set of SCMs that
induce FFRCISTG models, is a strict subset of !, the space of all SCMs.

From observation 2 above, we see that with a set of SCMs that share the same constraint, the ones
that induce it as a structurally stable constraint dominates. Leveraging observation 3 and 4 above, we
can formally characterize the difference between FFRCISTG diagrams and causal diagrams in terms
of structurally stable constraints: given an SCM M, its causal diagram only encodes all structurally
stable constraints on the collection of distributions induced by M, whereas its FFRCISTG diagram
also encode structurally unstable constraints arising from correlated error terms.
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F Proofs for Theorems

F.1 Supporting Lemmas

Lemma F.1 (Casual Diagram of Submodel). Given an SCM M and its causal diagram G, the causal
diagram induced by its submodel Mx is GX, i.e., G with all incoming edges to X removed.

Proof. By Def. 7, Mx replaces fx with X ⇑ x for all X ↑ X. As a result, X have no endogenous
or exogenous parents. By the causal diagram construction in Def. 11, edges that point to X are added
only when X have parents. Thus, there is no edges incoming to X in the causal diagram induced by
Mx. In addition, given that Mx keeps all other components of M intact, all other edges remain the
same. Therefore, the causal diagram induced by Mx is G with all incoming edges to X removed,
denoted as GX.

Corollary 2. Condition (ii) of Def. 1 and Def. 2 can be translated to an equivalent graphical
condition:

L2.25: For any vi ↑ x, for all Vj ↑ Y, if Vi ↑ An(Vj) in GX\Vj
, then vi ↑ xj .

L2.25: For any Vi, B ↑ X → Pa(Vi), for all Vj ↑ Y, if Vi ⇒↑ Xj and Vi ↑ An(Vj) in Gxj , then
xi →B = xj →B.

Proof. It follows from Lemma F.1.

Lemma F.2. Given a causal diagram G over V and a set of counterfactual events W↑, if P (W↑) is
in PL2.25 of all SCMs compatible with G, then P (↘W↑↘) is also in PL2.25 of all SCMs compatible
with G.

Proof. If P (W↑) is in PL2.25 of all SCMs compatible with G, it satisfies both conditions of Def.
1. We prove that after applying the exclusion operator to W↑, the distribution still satisfies both
conditions of Def. 1.

Let the set of potential outcome variables in W↑ be denoted as {W1[t1]
, ...,Wn[tn]

}. P (W↑) is
indexed by the union of subscripts of all Witi

↑ W↑, and we denote this index by t ≿ ⋃
i ti. The

exclusion operator does not add subscripts to the variable, so let the new index set be the union of
subscripts of all ↘Witi

↘ ↑ ↘W↑↘ and denote it as t→ ≿ ⋃
i t

→
i. Cond. (i) of Def. 1 still holds.

Given that P (W↑) also satisfies Cond. (ii) of Def. 1 and by Cor. 2, it means that whenever there
is a directed path from T ↑ T to Wi ↑ V [W↑] in GT\W , t is in the subscript of Wi, i.e. t ↑ ti.
Applying the exclusion operator on Witi

removes variables in ti that does not have a directed edge
to Wi in GTi

. Thus, it does not affect those that satisfy the antecedent of Cond. (ii) of Def. 1. As a
result, whenever, the antecedent of Cond. (ii) of Def. 1 holds, t still belongs to the subscript of Wi.
So Cond. (ii) of Def. 1 still holds.

Given that P (↘W↑↘) satisfies both conditions of Def. 1, it is in PL2.25 .

Lemma F.3. Given a causal diagram G over V and a set of counterfactual events W↑, if P (W↑)
is in PL2.5 of all SCMs compatible with G, then P (↘W↑↘) is also in PL2.5 of all SCMs compatible
with G.

Proof. The proof is very similar to Lemma F.2, with the key point being that the exclusion operator
on Witi

removes variables in ti that does not have a directed edge to Wi in GTi
. Thus, it does not

affect those that satisfy the antecedent of Cond. (ii) of Def. 2.

Lemma F.4. Given a causal diagram G over V and a set of counterfactual events W↑ = {Wi[xi]
}

with all subscripts taking consistent values from the same set v ↑ V al(V), if ↘Wi[xi]
↘ = ↘Wi[↓ixi]

↘
for all i, then P (W↑) is in PL2.25 of all SCMs compatible with G.
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Proof. The exclusion operator removes subscripts x from Wi if there is no directed path from X to
Wi in G↗iXi

. Thus, the subscripts that remain after exclusion capture precisely the cases in which the
antecedent of Cond.(ii) in Definition 1 holds. If ↘Wi[xi]

↘ = ↘Wi[↓ixi]
↘, the subscript in xi accounts

for all instances in ⇔i ∗ xi that are restricted by Cond. (ii). Therefore, P (W↑) satisfies Def. 1 and
belongs to PL2.25 .

Lemma F.5 (ctf-calculus — do-calculus reduction (Lemma 6 in [5])). ctf-calculus subsumes do-
calculus.
Lemma F.6 (ctf-calculus 2.25 — do-calculus reduction). ctf-calculus restricted to PL2.25 subsumes
do-calculus.

Proof. This result follows from the proof of Lemma F.5 where all steps in the reduction only involves
quantities within PL2.25 .

Given a graphical model with bidirected edges, G, the set V of observable variables represented as
vertex can be partitioned into subsets called c-components [23] such that two variables belong to the
same c-component if they are connected in G by a path made entirely of bidirected edges.
Definition 33 (Ancestral components [5]). Let W↑ be a set of counterfactual variables, X↑ ↗
W↑, and G be a causal diagram. Then the ancestral components induced by W↑, given X↑,
are sets A1↑,A2↑, . . . that form a partition over AnW↑, made of unions of ancestral sets
An[GX↑(Wt)]Wt,Wt ↑ W↑. Sets An[GX↑(W1[t1])]W1[t1] and An[GX↑(W2[t2])]W2[t2] are put to-
gether if they are not disjoint or there exists a bidirected arrow in G connecting variables in those
sets.
Lemma F.7 (Ancestral Set Factorization (Lemma 3 in [5])). Let W↑ be an ancestral set, that is,
An(W↑) = W↑, and let w↑ be a vector with a value for each variable in W↑. Then,

P (W↑ = w↑) = P (
∧

Wt↓W↑

Wpaw
= w) (129)

where each w is taken from w↑ and paw is determined for each Wt ↑ W↑ as follows:

(i) the values for variables in Paw →T are the same as in t, and

(ii) the values for variables in Paw\T are taken from w↑ corresponding to the parents of Wt.
Lemma F.8 (C-component Factorization (Lemma 4 in [5])). Let P (W↑ = w↑) be a distribution
such that each variable in W↑ has the form Wpaw

, let W1 < W2 < · · · be a topological order
over the variables in G[V(W↑)], and let C1, ...,Ck be the c-components of the same graph. Define
Cj↑ = {Wpaw

↑ W↑ | W ↑ Cj} and cj↑ as the values in w↑ corresponding to Cj↑ , then
P (W↑ = w↑) decomposes as

P (W↑ = w↑) =
∏

j

P (Cj↑ = cj↑) (130)

Lemma F.9 (Ancestral Set in L2.25/L2.5). P (W↑) is in L2.25/L2.5 if and only if the distribution
over its ancestral set P (An(W↑)) is also in L2.25/L2.5.

Proof. For L2.25, CRS(An(W↑)) = CRS(W↑) by Def. 5; and for L2.5, An(An(W↑)) =
An(W↑) by Def. 28. Thus, W↑ satisfies Lemma 1 if and only if An(W↑) satisfies Lemma 1.

Lemma F.10 (Ancestral Set Factor in L2.25/L2.5). Let W↑ be an ancestral set, that is, An(W↑) =
W↑, and let w↑ be a vector with a value for each variable in W↑. Then, P (W↑) is in L2.25/L2.5

only if its ancestral set factor P (
∧

Wt↓W↑
Wpaw

= w) is in L2.25/L2.5.

Proof. If P (W↑) is in L2.25/L2.5, then there does not exist two variables Wt and Ws in W↑ with
inconsistent subscripts. Therefore, the ancestral set factorization will also have distinct W for each
Wpaw

. It satisfies conditions in Def. 1/Def. 2 with consistent values from w↑ for L2.25 and with
Paw blocking all directed path from other variables to W .
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Algorithm 2 CTFIDU(Y↑,y↑,Z,G)
Input: G causal diagram over variables V; Y↑ a set of counterfactual variables in V; y↑ a set of

values for Y↑; and available distribution specification Z.
Output: P (Y↑ = y↑) in terms of available distributions or FAIL if not identifiable from ↓G,Z↔

1: let Y↑ ⇑ ↘Y↑↘.
2: if there exists Yx ↑ Y↑ with two or more different values in y↑(Yx) or Yy ↑ Y↑ with y↑(Yy) ⇒= y

then return 0.
3: end if
4: if there exists Yx ↑ Y↑ with two consistent values in y↑(Yx) or Yy ↑ Y↑ with y↑(Yy) = y then

remove repeated variables from Y↑ and values y↑.
5: end if
6: let W↑ ⇑ An(Y↑), and let C1↑, . . . ,Ck↑ be corresponding ctf-factors in G[V(W↑)].
7: for each Ci s.t. (Ci↑ = ci↑) is not inconsistent, Z ↑ Z s.t. Ci → Z = ↖ do
8: let Bi be the c-component of GZ such that Ci ↗ Bi, compute PV\Bi

(Bi) from PZ(V).
9: if IDENTIFY(Ci,Bi, PV\Bi

(Bi),G) does not FAIL then
10: let PV\Ci

(Ci) ⇑ IDENTIFY(Ci,Bi, PV\Bi
(Bi),G).

11: let P (Ci↑ = ci↑) ⇑ PV\Ci
(Ci) evaluated with values (ci↑ ⇔

⋃
Ct↓Ci↑

pac).
12: move to the next Ci.
13: end if
14: end for
15: if any P (Ci↑ = ci↑) is inconsistent or was not identified from Z then return FAIL.
16: end if
17: return P (Y↑ = y↑) ⇑

∑
w↑\y↑

∏
i P (Ci↑ = ci↑).

Lemma F.11 (C-component Factor in L2.25/L2.5). Let P (W↑ = w↑) be a distribution such that
each variable in W↑ has the form Wpaw

, with its c-component factorization P (W↑ = w↑) =∏
j P (Cj↑ = cj↑). Then, P (W↑) is in L2.25/L2.5 only if its c-component factors P (Cj↑ = cj↑)

are in L2.25/L2.5.

Proof. If P (W↑) is in L2.25/L2.5, then it has distinct W for each counterfactual in the set and
satisfies Def. 1/Def. 2. This property is not affected by c-component factorization as it only partitions
W↑ into subsets connected by bidrected paths. As a result, each P (Cj↑ = cj↑) will also satisfy Def.
1/Def. 2.

Lemma F.12 (Consistency (Lemma 1 in [5])). Given SCM M and X,Y ↑ V, T,R ↗ V, and let x
be a value in the domain of X . Then,

P (YT↑ , XT↑ = x) = P (YT↑x, XT↑ = x), (131)

where T↑ represent any combination of counterfactuals based on T.
Lemma F.13 (Exclusion operator (Lemma 2 in [5])). Let Yx be a counterfactual variable, G a causal
diagram, and

Yz such that Z = X →AnGX
(Y ) and z = x → Z. (132)

Then, Yz = Yx holds for any model compatible with G. Moreover, this transformation is denoted as
↘(Yx)↘ := Yz.
Lemma F.14 (Independence in L2.25/L2.5). Given a CBN2.25/CBN2.5, Theorem 6 is sound when
the AMWN is constructed over W↑ where P (W↑) is in L2.25/L2.5.

Proof. The soundness follows from soundness of Theorem 6, where the ancestral set factorization
constructed over {Xt,Yr,Z} in the proof is also in the corresponding layers L2.25/L2.5 by Lemma
F.9 and Lemma F.10.
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Algorithm 3 CTFID(Y↑,y↑,X↑,x↑,Z,G)
Input: G causal diagram over variables V; Y↑,X↑ a set of counterfactual variables in V; y↑,x↑ a

set of values for Y↑ and X↑; and available distribution specification Z.
Output: P (Y↑ = y↑ | X↑ = x↑) in terms of available distributions or FAIL if non-ID from ↓G,Z↔.

1: Let A1↑,A2↑, . . . be the ancestral components of Y↑ ⇔X↑ given X↑.
2: Let D↑ be the union of the ancestral components containing a variable in Y↑ and d↑ the

corresponding set of values.
3: let Q ⇑ CTFIDU(

⋃
Dt↓D↑

Dd,d↑,Z,G).
4: return

∑
d↑\(y↑↗x↑)

Q/
∑

d↑\x↑
Q.

F.2 Proofs for Main Theorems

Theorem 1 (L2.25-Connection — SCM-CBN2.25). The Causal diagram G induced by the SCM M
following the constructive procedure in Def. 11 is a CBN2.25 for PL2.25 , the collection of all L2.25

distributions induced by M.

Proof. Let M be an SCM, PL2.25 the L2.25 distributions it induces and G its causal diagram. We
prove that ↓G,PL2.25↔ is a CBN2.25, by showing that the 3 conditions defined in Def. 3 holds in
PL2.25 according to G.

(Independence Restrictions) Given a potential response of the form Wpaw
, its value only depends on

the exogenous variables Uw which appear as arguments in fW . Let W↑ be the set of counterfactuals
of the form Wpaw

with paw taking consistent values from v ↑ V al(V), P (W↑) falls in L2.25 as it
satisfy conditions of Def. 1. Let C1, ...,Cl be the c-components of G[V(W↑)], and C1↑, ...,Cl↑
the corresponding partition over W↑. Then the set of exogenous variables U(W↑) can be partitioned
as U(C1↑), ...,U(Cl↑) where U(Ci↑) and U(Cj↑) are disjoint for all i, j = 1, ..., l, i ⇒= j, due to
the absence of bidirected paths between variables in Ci and and variables Cj . Then by Def. 1,

(Exclusion restrictions) Given a potential response of the form Ypay,z, its value only depends on
the exogenous variables Uy which appear as arguments in fY as pay are fixed. Thus, Ypay,z(u) =
Ypay

(u). Then by Def. 1, for any counterfactual set W↑ such that P (Ypay,z = y,W↑ = w↑) ↑
PL2.25 ,

P (Ypay,z = y,W↑ = w↑) =
∑

u

1(Ypay,z(u) = y,W↑(u) = w↑)P (u) (133)

=
∑

u

1(Ypay
(u) = y,W↑(u) = w↑)P (u) (134)

= P (Ypay
= y,W↑ = w↑) (135)

which proves the exclusion restrictions are satisfied.

(Consistency restrictions) Given u ↑ V al(U) such that Yz(u) = y,Xz(u) = x,W↑(u) = w↑, for
some Y ↑ V, X ↗ Pay ,Z ↗ V\(X ⇔ {Y }), R = Pay\(X ⇔ Z), we have

Yz(u) = fY (z → pay,Xz(u),Rz(u),u(Uy)) (136)

= fY (z → pay,x,Rz(u),u(Uy)) (137)

= Yzx(u) (138)

Then by Def. 1, for any counterfactual set W↑ such that P (Yz = y,Xz = x,W↑ = w↑) ↑ PL2.25 ,

P (Yz = y,Xz = x,W↑ = w↑) =
∑

u

1(Yz(u) = y,Xz(u) = x,W↑(u) = w↑)P (u) (139)

=
∑

u

1(Yxz(u) = y,Xz(u) = x,W↑(u) = w↑)P (u) (140)

= P (Yxz = y,Xz = x,W↑ = w↑) (141)

which proves the consistency restrictions are satisfied.
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Definition 34 (Counterfactual Reachability Set). Given a graph G and a potential outcome Yx,
the counterfactual reachability set of Yx, denoted CRS(Yx), consists of each ↘Wx↘ s.t. W ↑
(An(Y ) ⇔ {De(V ) : ↙V ↑ X})\X and ↘Wx\w↘ s.t. W ↑ (An(Y ) ⇔ {De(V ) : ↙V ↑ X}) →X.
For a set W↑, CRS(W↑) is defined to be the union of the CRS of each potential outcome in the
set, such that for any set of variables {Wi[xi]

}i ↗ W↑ with their CRS set having counterfactual
variables {R[xi]}i over the same variable R, {R[xi]}i is merged into one variable ↘R[↗ixi]↘ if
↘Wi[↓ixi]

↘ = Wi[xi]
for all i.

Lemma 1. A distribution Q = P (W↑) is in the L2.25/L2.5 distributions induced by any SCM
compatible with a given graph G if and only if the set CRS(W↑) satisfies (i) and (ii) / An(W↑)
satisfies (i): (i) Does not contain any pair of potential outcomes Ws,Wt of the same variable W
under different regimes where s ⇒= t; (ii) W↑ does not contain any pair of potential outcomes Rs,Wt

with inconsistent subscripts where s →T ⇒= t → S.

Proof. Consistent values across the variables are enforced by (ii). Each CRS set corresponding to
a potential outcome Y↑ includes all variables that must remain consistent with Y↑ under the regime
∗. When taking the union of CRS sets over multiple potential outcomes, and if the union does not
contain any pair of potential outcomes Ws,Wt for the same variable W under different regimes, then
two cases arise:

(a) All CRS sets are disjoint with respect to the variables from which their potential outcomes
are derived. This implies that the ancestral and descendant sets of these variables are also
disjoint, so there is no directed path crossing the CRS sets in a way that would trigger the
antecedent of Cond. (ii) in Definition 1.

(b) Any overlapping CRS sets must involve counterfactuals over the same variable, which
are merged as |Wi[↓i↑xi]

| = |Wi[↑xi]
| for all i. This condition implies that the variables

underlying these merged CRS sets are consistent, by Lemma F.4.

Therefore, P (W↑) satisfies conditions in Def. 1 and belongs to PL2.25 .

The graphical check for L2.5 is proved in Corollary 3.7 of [19].

Theorem 2 (Soundness and Completeness for CBN2.25/CBN2.5 Identifiability). An L2.25/L2.5

quantity Q is identifiable from a given set of observational and interventional distributions and a
CBN2.25/CBN2.5 if and only if there exists a sequence of applications of the rules of ctf-calculus
for CBN2.25/CBN2.5 and the probability axioms restrained within L2.25/L2.5 that reduces Q into a
function of the available distributions.

Proof. The soundness of the calculus for L2.25/L2.5 follows from the soundness of the ctf-calculus
rules. The soundness of the ctf-calculus rules in turn follows from Lemma F.12 for Rule 1, Lemma
F.14 for Rule 2 and Lemma F.13 for Rule 3.

To prove that it is complete, we rely on the completeness of the CTFID algorithm reproduced as
Algo. 3 and Algo. 2 [7]. Specifically, we show that if the query is in L2.25/L2.5, all steps of the
CTFID algorithm can be justified by the rules of ctf-calculus for CBN2.25/CBN2.5 and the probability
axioms restrained within L2.25/L2.5.

Line 1 and 2 of Algo. 3 are justfied by Lemma F.9 and Lemma F.10: if the input query P (Y↑ =
y↑|X↑ = x↑) is in L2.25/L2.5, then the ancestral set factorization P (

⋃
Dt↓D↑

Dpad
= d) over

D↑ = An(Y↑,X↑) and d↑ ↑ V al(D↑) consistent with y↑,x↑ is also in L2.25/L2.5. Thus the
probability axioms underlying the marginalization step have all quantities within the corresponding
layers.

Line 1 of Algo. 2 is justified by rule 3 of the ctf-calculus and Lemma F.2 and Lemma F.3 where both
D↑ and ↘D↑↘ are in the corresponding layers. Line 2 to 3 are justified by quantities in L2.25/L2.5

having consistent values. Line 4 to 5 follow from probability axiom to remove redundant variables.
From line 6 to 14, the algorithm identifies the factors based on c-componentes using IDENTIFY [23]
which soundness can be justified with do-calculus [9], which in turn is subsumed by ctf-calculus 2.25
by Lemma F.6. At line 17, the algorithm returns the result as a product that is justified by Lemma
F.11.
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Therefore, given a query in L2.25/L2.5, CTFID is both sound and complete to determine if it is
identifiable from the available data without any intermediate step having quantities outside the
layer.

Theorem 3 (PCH*). Given an SCM M and its induced collections of observational (PL1),
interventional(PL2), L2.25 (PL2.25), L2.5 (PL2.5), and counterfactual (PL3) distributions: PL1 ↗
PL2 ↗ PL2.25 ↗ PL2.5 ↗ PL3 .

Proof. With PCH already established and proved for L1,L2 and L3 [2], we prove that (1) PL2 ↗
PL2.25 , (2) PL2.25 ↗ PL2.5 and (3) PL2.5 ↗ PL3 .

It is easy to show that PL2 ↗ PL2.25 , because each distribution in PL2 can be derived from a
marginalization of a distribution in PL2.25 :

P (Y = y|do(X = x)) =
∑

X↓Y↔X

P (
∧

Vi↓Y\X

Vi[x]
= vi,

∧

Vi↓Y↔X,vi=Vi↔x

Vi[x\vi]
= vi) (142)

where the subscripts for all variables take the whole set x. Clearly, it is in PL2.25 as the consistent
subscripts satisfy conditions of Def. 1.

It is also easy to see that PL2.5 ↗ PL3 because PL3 contains all possible joint distributions over all
counterfactual variables, whereas PL2.5 imposes additional constraints over the joint of counterfactual
variables.

To prove that PL2.25 ↗ PL2.5 , we show that if a distribution satisfies Def. 1, it also satisfies Def. 2.
First, note that the key difference between Def. 1 and Def. 2 lies in the two conditions. Thus, we only
need to prove that a distribution of the form P (

∧
Vi↓Y\X Vi[xi]

= vi,
∧

Vi↓Y↔X,vi=Vi↔x Vi[xi\vi]
=

vi) satisfying the two conditions in Def. 1 must also satisfy the two conditions in Def. 2.

For Cond. (i), both languages require the subscripts to cover the whole space of X. However, Def. 1
is stronger by restricting the value assignments to the set x, while Def. 2 allows xi to take different
values from V al(Xi). Thus, if Cond. (i) of Def. 1 holds, Cond. (i) of Def. 2 immediately holds.

For Cond. (ii) and by Cor. 2, the antecedent in Def. 2 checks if there is a directed path from B ↑ X
to Vi ↑ Ch(B) to Vj in GXj

. If such a path exists, we denote it by p. There are two possibilities:
(a) p is in GX\Vj

; (b) p is not in GX\Vj
. For (a), Cond. (ii) of Def. 1 will enforce b to appear in

the subscript of both Vi and Vj . For (b), it implies that there exists a variable X ↑ X\Xj that lies
on p between Vi and Vj . We focus on the subpath p→ of p directed from X to Vj . If X is in An(Vj)
in GXj

, then X must be in Xj by Cond. (ii) of Def. 1 which leads to a contradiction. If X is not
in An(Vj) in GXj

, then there exists another X → ↑ X\Xj that lies on p→ between X and Vj . We
can apply the same logic to shorten p until there is no more variable in X\Xj that fulfills the same
condition. When this terminal condition is hit, the final subpath enforces the variable in X\Xj on the
path to be in the subscript of Vj . The same contradiction is achieved. As a result, there cannot be any
variable X ↑ X\Xj that lies on p between Vi and Vj . Therefore, whenever the antecedent of Cond.
(ii) of Def. 2 is triggered, Cond. (ii) of Def. 1 also holds to enforce consistent subscripts between Vi

and Vj .

This proves that all distributions in PL2.25 are also in PL2.5 , or equivalently PL2.25 ↗ PL2.5 .

Theorem 4 (Hierarchy of Graphical Models, PCH↑). Given a causal diagram G, the set of constraints
it encodes when it is interpreted as a graphical model on layer i is a subset of the constraints it
encodes when it is interpreted as a graphical model on layer j, when i ∝ j.

Proof. The constraints encoded by a BN are included as Cond. (i) of the corresponding CBN, making
the containment relationship is straightforward. The hierarchical relationship among the constraints
encoded by CBN2.25, CBN2.5, and CTFBN is also straightforward, as they share the same structural
form while progressively increasing the flexibility of distributions allowed at each level in the model
hierarchy. The containment relationship between CBN and CBN2.25 follows from the fact that
do-calculus is subsumed by the ctf-calculus 2.25 (Lemma F.6), and that the constraints defined in
CBN imply all rules of do-calculus, while those in CBN2.25 imply all rules of ctf-calculus 2.25.
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Graphical Model Meaning of Missing Directed Edge Meaning of Missing Bidirected Edge
L1: BN P (vi|pai,ndi) = P (vi|pai)
L2: CBN P (vipai,z

) = P (vipai
)

P (vi|do(x),paci , do(paui ))
= P (vi|do(x),paci ,paui )

L2.25: CBN2.25
P (vipai,z

,w↑) = P (vipai
,w↑),

with P (vipai,z
,w↑) ↑ PL2.25

P (vipai
, vjpaj

) = P (vipai
)P (vjpaj

),
with Vi ⇒= Vj

and pai and paj taking consistent values

L2.5: CBN2.5
P (vipai,z

,w↑) = P (vipai
,w↑),

with P (vipai,z
,w↑) ↑ PL2.5

P (vipai
, vjpaj

) = P (vipai
)P (vjpaj

),
with Vi ⇒= Vj

L3: CTFBN P (vipai,z
,w↑) = P (vipai

,w↑),
for any w↑

P (vipai
, vjpaj

) = P (vipai
)P (vjpaj

)
with pai ⇒= paj if Vi = Vj

Table 3: Summary of how missing edges are interpreted in graphical models at different layers

Since the constraints encoded by graphical models are encoded by the missing edges in G, we can
alternatively establish the hierarchy by comparing how different models interpret these missing edges,
as summarized in Table 3. For missing directed edges, the constraint forms are consistent across
layers, but higher layers allow increasing flexibility in the sets w↑ that can be jointly conditioned
on. Similarly, for missing bidirected edges, the independence constraints in CBN2.25s, CBN2.5s,
and CTFBNs share a common structure, with each successive model relaxing the limitations on how
these independencies are expressed:

• Independence constraints in CBN2.25s only apply to distributions over distinct variables
that share consistent parent values.

• Independence constraints in CBN2.5s extend to distributions over distinct variables, allowing
their parents’ values to vary freely.

• Independence constraints in CTFBNs apply to distributions over any variables, including
those of the form P (Wpaw

,Wpa→
w
) as long as paw ⇒= pa→w.

Theorem 5 (L2.5-Connection — CBN2.5 (Markovian and Semi-Markovian)). The Causal diagram
G induced by the SCM M following the constructive procedure in Def. 11 is a CBN2.5 for PL2.5 , the
collection of all L2.5 distributions induced by M.

Proof. The proof is similar to the proof for Theorem 1 with the independence restrictions expanded
to allow inconsistent parent values, and the exclusion and consistency restrictions expanded to join
more W↑ such that the distributions are within _LL2.5 instead of _LL2.25.

G Frequently Asked Questions

Q1. Where is the causal diagram coming from? Is it reasonable to expect the data scientist to
create one?
Answer. First, the assumption of the causal diagram is made out of necessity. The causal
diagram is a well-known flexible data structure that is used throughout the literature to
encode a qualitative description of the generating model, which is often much easier to
obtain than the actual mechanisms of the underlying SCM [15, 22, 17]. The goal of this paper
is not to decide which set of assumptions is the best but rather to provide tools to perform
the inferences once the assumptions have already been made, as well as understanding the
trade-off between assumptions and the guarantees provided by the method.
Second, the true underlying causal diagrams cannot be learned only from the observational
distribution in general. More specifically, there almost surely exist situations that M1 and
M2 induce the same observational distribution but are compatible with different causal
diagrams (see [2, Sec. 1.3] for details). With higher layer distributions (such as distributions
from L2), it is possible to recover a more informative equivalence class of diagrams that
encode additional constraints present in the input layer [12, 11, 10, 13, 24].
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Q2. What is a graphical model and how can it help us in causal inference?
Answer. A graphical model is a modeling tool that allows one to represent a compatibility
relationship between a causal diagram G and a collection of distributions P. Specifically, it
encodes how the topological structure of the diagram can be interpreted to impose constraints
on the associated distributions. For instance, when restricting attention to L1 distributions
(i.e., purely observational), Bayesian Networks (BNs) are the most prominent graphical
models to encode conditional independence constraints of the observational distribution
[14]. As we climb up the PCH and include more distributions into the collection, more
constraints start to emerge. To encode the richer set of causal constraints in L2 distributions
(i.e., interventional), the Causal Bayesian Network (CBN) was introduced [2]. More recently,
CTFBN is introduced to encode the compatibility relationship between the causal diagram
and L3 distributions (i.e., counterfactual) [1]. The models defined in this work further
refine the space of L3 distributions by restricting to constraints that are, at least in principle,
empirically falsifiable. In a nutshell, a graphical model should not be viewed merely as a
causal diagram, but rather as a formal specification of the compatibility relationship between
a pair ↓G,P↔. An example of a CBN is illustrated in Fig. 13, where missing edges in the
causal diagram represent invariance constraints in the distributions.
The causal diagram in the graphical model offers a compact representation for constraints in
the associated distributions. These constraints are fundamental to causal inference, as they
constitute one of the three core inputs to the causal inference engine (Fig. 1). As discussed
ealier, the main task in causal inference is to determine whether a query from a higher layer
of the PCH can be identified as a function of observed data from lower layers. For example,
the task may be to identify a causal effect P (y|do(x)) when only the observational data P (v)
is available. According to the Causal Hierarchy Theorem (CHT), these layers are strictly
distinct, and it is impossible to ascend to a higher layer without additional assumptions
about that layer [2, Thm. 1]. The constraints encoded by graphical models serve precisely
this role – they encode the assumptions about higher layers that enable us to bridge the gap
and make such inferences possible. Given the CBN in Fig. 13, the invariance constraint
P (Y |do(X)) = P (Y |X) allows us to identify the L2 query P (y|do(x)) as P (y|x), which
only involves observational distributions. Question 9 below will provide further details on
the inferential process by explaining how the local constraints defined in a graphical model
can be composed to derive additional constraints implied by the model.

Q3. Why do we need to introduce new layers to the PCH, besides the existing ones?
Answer. The original three layers of the PCH, capturing observational, interventional, and
counterfactual distributions, provide a natural partition among distinct capabilities in causal
reasoning. Layers 1 and 2 correspond to well-understood physical procedures: random
sampling for observational distributions and random experimentation for interventional
distributions. In contrast, Layer 3 consists of purely counterfactual quantities, that are
traditionally considered detached from empirical data collection in principle. In addition,
while Layers 1 and 2 are well-structured and homogeneous (each quantity within a layer
having a similar interpretation), Layer 3 is more heterogeneous and contains quantities that
represent different aspects of the underlying data-generating process.
More recently, Bareinboim, Forney and Pearl introduced a new experimental procedure,
counterfactual randomization, that allowed one to sample directly from an L3 distribution [3].
This work was further extended in [19]. The introduction of counterfactual randomization
reveals a finer structure within Layer 3, distinguishing between counterfactual distributions
that are empirically accessible and those that are not. This fine-graining of Layer 3 is
illustrated in Fig. 14. Notably, these new families of distributions have attractive properties,
including well-defined symbolic languages as well as a closed set of inferential rules, as
shown in this work. This new view opened up a natural way of partitioning L3. In this work,
we studied the interplay between graphical models that inherent these features of the PCH
and have the property of empirical falsifiability.
To answer the question, the new layers introduced in the refined PCH may not be necessary
for all researchers. The original PCH already represents a major milestone in formalizing
the logic of causal inference. Still, for some researchers, the refinement and further parti-
tioning of Layer 3 can offer valuable insights. In particular, it allows for a more precise
understanding of the trade-off between empirical falsifiability and the inferential power of
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Figure 13: A CBN is a pair ↓G,P↔. Blue lines represent invariant constraints in P, which are
represented by features from G: missing directed edge from Y to X corresponds to the invariance
constraint P (X|do(Y )) = P (X) and missing bidirected edge between X and Y corresponds to the
invariance constraint P (Y |do(X)) = P (Y |X).

P (Y )
P (X,Y )

P (Y |do(x))

P (X,Y |do(z))

P (Yx, X)
P (Yx, Zx→)

P (Yx, Yx→)

P (U)

Layer 1
(Observational)

PL1

Layer 2
(Interventional)

PL2

Layer 2.25

PL2.25

Layer 2.5

PL2.5

Layer 3 (Counterfactual)

PL3

SCM
(unknown)

Figure 14: Pearl Causal Hierarchy (PCH↑) induced by an unknown SCM M. Layers 1 and 2 are
realizable, and Layer 3 is partially realizable. The realizable portion of Layer 3 are further refined
into two new layers: 2.25 and 2.5.

graphical models, and provides a tighter feedback loop between theoretical assumptions and
experimental capabilities.

Q4. What is the difference between layers 2.25 and 2.5?
Answer. The main difference between L2.25 and L2.5 lies in the type of counterfactual
randomization allowed. For L2.25, a counterfactual randomization applied to a variable X
assigns the same value x across all its children and descendants. As a result, distributions
in this layer cannot contain pairs of potential outcomes Ws, Rt with conflicting subscripts
where x ↑ s, x→ ↑ t and x ⇒= x→. In contrast, the counterfactual randomization action on a
variable X in L2.5 is more flexible and allows each outgoing edge from X to take a different
value. This flexibility leads to the possibility of some distributions in the layer to include
potential outcomes with different subscripts. This difference is graphically illustrated in
Fig. 10. However, all descendants of each child of X must still share the same value
of x, unless all directed paths from X to the descendant are blocked by other intervened
variables. This restriction stems from the rules of counterfactual randomization, which
prohibit an intervention to bypass a child and directly affect a descendant’s perception of X .
In summary, the constraint on consistent subscript begins at the intervened variable X in
L2.25, but shifts to the children of X in L2.5. These differences are reflected in the relaxed
conditions that define the symbolic language of L2.5, relative to those of L2.25.

Q5. Are all distributions within Layers 2.5 realizable?
Answer. Theoretically, all distributions in L2.5 are realizable if every action in the maximal
feasible action set is permitted. That is, in principle, an agent could draw samples from any
distribution in this layer through experimental procedures. However, whether a distribution
is realizable in practice depends on the physical constraints of the system. If certain actions
– such as counterfactual randomization on specific variables – are not feasible, then some
distributions in L2.5 will not be realizable in real-world settings [19].
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Query Layer Graphical Model Sufficient Necessary
L1 BN ↭ ↭
L1 CBN ↭ x
L2 BN x ↭
L2 CBN ↭ ↭
L2 CBN2.25 ↭ x

L2.25 CBN x ↭
L2.25 CBN2.25 ↭ ↭
L2.25 CBN2.5 ↭ x
L2.5 CBN2.25 x ↭
L2.5 CBN2.5 ↭ ↭
L2.5 CTFBN ↭ x
L3 CBN2.5 x ↭
L3 CTFBN ↭ ↭

Table 4: Examples of Matching between Graphical Models and Queries. Rows highlighted in green
represent a match between the model and the query such that the assumptions in the model are both
sufficient and necessary for making inference about the query.

The same principle applies to other layers of the PCH. For example, all distributions in
L2 are realizable in principle, assuming the agent can freely intervene on all variables.
However, practical constraints – such as cost, ethics, or technological barriers – may render
some interventions infeasible, thereby restricting the subset of L2 distributions that can be
realized.
Given a causal diagram and a specification of the allowed actions, one can determine
whether a given set of distributions is realizable [19]. Viewed this way, the full collection of
distributions in L2.5 can be interpreted as the theoretical boundary of what is empirically
accessible through physical experimentation.

Q6. How does the hierarchical structure defined over graphical models provide useful information
on the models?
Answer. The hierarchical structure over graphical models offers a clear picture of the
differences in the strength of assumptions encoded by each model. In causal inference
specifically, the strength of the assumptions determines what queries the model may in
principle support – specifically, whether the causal inference engine can proceed and provide
useful insights about the query. For instance, an L2 query P (y|do(x)) cannot be answered
by a BN, which only encods L1 constraints that does not have the power to bridge the
gap between the two layers. This limitation is formally captured by the Causal Hierarchy
Theorem (CHT), which states that to answer questions at one layer, one needs assumptions
at the same layer or even higher. This understanding allows practitioners to select models
from the hierarchy with sufficient inferential power for the query at hand.
On the other hand, the hierarchy also provides guidance in the opposite direction – helping
to identify when a model might be stronger than necessary. For instance, while any model
at or above a CBN in the hierarchy can answer an L2 query P (y|do(x)), using a model
that makes counterfactual assumptions (e.g., a CBN2.5) would be unnecessarily strong
and harder to falsify. Therefore, knowing the hierarchy of graphical models also allows
practitioners to avoid choosing models that make extra assumptions not required in the target
inferential task.
Putting these observations together, Table 4 summarizes when a model is sufficient and/or
necessary for queries from each layer of the PCH. In short, the hierarchy serves as a practical
guide for selecting models that are both sufficient and necessary – maximizing inferential
power while minimizing unfalsifiable assumptions.

Q7. What is the difference between the hierarchical structure of languages and graphical models?
Answer. The hierarchical structure of the languages (i.e., the PCH) defines how different
families of distributions are related – specifically, each layer’s distributions form a subset
of those in the layer above. In parallel, the hierarchy of graphical models reflects how
constraints on these distributions are encoded through the topological properties of the
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Figure 15: Constraints listed in the definition of a graphical model serves as a local basis that implies
all constraints encoded in the model. Blue lines represent a set of local invariance constraints that can
be composed to imply the global constraint represented by the red line.

causal diagram. Each graphical model at layer i encodes constraints over the corresponding
family of distributions in layer i of the PCH. Therefore, the hierarchy of the languages
directly informs the hierarchy of graphical models.
However, since a graphical model is defined as a compatibility relationship between a pair
↓G,P↔, the expressiveness of the topological features in G also plays a critical role. As
we move up the hierarchy, the causal diagrams must support richer or more expressive
interpretations of missing edges to capture the increasingly complex constraints required
by higher-layer distributions. Both hierarchies are illustrated in Fig. 5, where square boxes
depict the hierarchy over distributions, and round boxes represent the hierarchy over the
constraints encoded by graphical models.

Q8. Why should a data scientist care about the trade-off between expressive power and empirical
falsifiability of the graphical models?
Answer. In any modeling task, it is generally desirable to construct a model that accurately
reflects the underlying generative process while also supporting future inferential tasks.
Achieving stronger inferential power often requires incorporating stronger assumptions into
the model. However, these assumptions can make the model more prone to errors that does
not match with reality. Empirical falsifiability acts as a form of regularization, enabling the
data scientist to identify, falsify and possibly correct wrong assumptions using empirical
evidence. As a result, the model can yield more reliable and trustworthy causal conclusions.
The importance of falsifiability echoes Karl Popper’s philosophy, which argues that scientific
theories must be testable and refutable – setting science apart from pseudoscience [18].
Thus, understanding where each graphical model falls on the spectrum of expressive power
versus empirical falsifiability is essential for practitioners who align with Popper’s principle.

Q9. What are the differences between local constraints and global constraints?
Answer. As discussed earlier when we introduce the inferential machinery for
CBN2.25/CBN2.5, local constraints refer to those that are defined over distributions involv-
ing a variable and its parents, and they are the constraints that are explicitly stated in the
definitions of graphical models. For example, the local constraints in a BN are the conditional
independencies of the form P (vi|pai,ndi) = P (vi|pai), where pai denotes the parents
and ndi the non-descendants of Vi. Given a BN over the chain diagram X ≃ Z ≃ W ≃ Y ,
the local constraints include P (w|z, x) = P (w|z) and P (y|w, z, x) = P (y|w).
Global constraints, on the other hand, involve arbitrary subsets of variables, possibly far apart
in the causal diagram. These constraints are not explicitly listed in the model’s definition
but can be derived by composing local constraints. For example, given the same BN over
the chain above, a global constraint is P (y|z, x) = P (y|z), where the direct parent of Y ,
namely W , is no longer explicitly conditioned on.

39



This distinction highlights the role of local constraints as a basis for implying the full set of
global constraints that a graphical model implies, as illustrated in Fig. 15. This relationship
is mirrored in the connection between a graphical model and its associated inferential
calculus: the calculus rules form the closure of all global constraints that logically follow
from the local ones encoded in the model.
The process by which local constraints can be composed to yield global constraints was
illustrated in Example 3. We revisit this idea with a new example in Fig. 15. Consider a
CBN over the chain diagram X ≃ Z ≃ Y . The local constraints specified in the definition
of the CBN are depicted as connecting lines between nodes within the small yellow circle.
These local constraints can imply additional constraints not explicitly listed in the definition.
One such global constraint is P (y|do(x)) = P (y|x), represented by the red connection line
in the figure. This global constraint can be derived by composing – or “gluing” – a sequence
of local invariance constraints, shown as blue connection lines.

P (y|do(x)) =
∑

z

P (y|do(x), z)P (z|do(x)) (Probability Axiom) (143)

=
∑

z

P (y|do(xz))P (z|do(x)) (Cond. (iii) of Def. 17) (144)

=
∑

z

P (y|do(z))P (z|do(x)) (Cond. (ii) of Def. 17) (145)

=
∑

z

P (y|z)P (z|x) (Cond. (iii) of Def. 17) (146)

=
∑

z

P (y|xz)P (z|x) (Cond. (i) of Def. 17) (147)

=P (y|x) (Probability Axiom) (148)

In summary, although not all constraints are explicitly included in the local basis of a graph-
ical model definition, many are implied through its structure. Since the 1980s, this ability to
encode a parsimonious, polynomial-sized set of local constraints that implicitly represent an
exponential number of global constraints has been an attractive feature contributing to the
popularity and usefulness of graphical models in inferential tasks.

Q10. What is the connection between realizability and empirical falsifiability?
Answer. Realizability is a property of distributions, indicating that an agent can draw
samples from them through physical experimentation. For example, if an agent can intervene
on a variable X and fix it to a value x, it gains access to the interventional distribution
P (v | do(x)) in layer L2.
In the context of graphical models, empirical falsifiability is property of constraints over
these distributions. To empirically falsify a constraint, the agent must have the experimental
capabilities to draw samples from all distributions involved in the constraint. In other words,
the constraint’s falsifiability requires the realizability of the associated distributions. For
instance, testing the constraint P (y | do(x, z)) = P (y | do(x)) requires the ability to
sample from both P (y | do(x, z)) and P (y | do(x)). Whether this is feasible depends on
the experimental capabilities and limitations of the system in question.
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