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Abstract

Understanding the predictions made by deep learning models remains a central
challenge, especially in high-stakes applications. A promising approach is to
equip models with the ability to answer counterfactual questions – hypothetical
“what if?” scenarios that go beyond the observed data and provide insight into a
model reasoning. In this work, we introduce the notion of causal interpretability,
which formalizes when counterfactual queries can be evaluated from a model
and observational data. We analyze two common model classes – blackbox and
concept-based predictors – and show that neither is causally interpretable in general.
To address this gap, we develop a framework for building models that are causally
interpretable by design. Specifically, we derive a complete graphical criterion that
determines whether a given model architecture supports a given counterfactual
query. This leads to a fundamental tradeoff between interpretability and predic-
tive accuracy, which we characterize by identifying the unique maximal set of
features that yields an interpretable model with maximal predictive expressiveness.
Experiments corroborate the theoretical findings.

1 Introduction

Despite the remarkable success of deep learning models across a wide range of tasks – including
image recognition [5, 8], natural language processing [2, 24], and reinforcement learning [22, 23] –
these models remain fundamentally opaque. Although they are highly effective at predicting labels
based on statistical correlations in the data, they lack the capacity to explain the reasoning behind their
predictions, earning them the colloquial label of “black boxes.” In other words, current models are
difficult to interpret: they lack the ability to justify why a particular decision was made, identify which
input factors were most influential, or reason about how outcomes might differ under alternative,
counterfactual conditions. This interpretability gap raises concerns in high-stakes domains such as
healthcare, law, and scientific discovery, where understanding how and why a model makes a decision
is as important as the decision itself.

A rich body of research on explainable AI (XAI) has been developed to better understand the behavior
of learned models. For instance, post-hoc explanation methods such as LIME [20], SHAP [10], and
Grad-CAM [21] generate local or visual attributions in terms of pixels or extracted features to help
interpret predictions. Other approaches aim to build intrinsically interpretable models, such as those
that impose sparsity constraints [12], restrict final layers [27], or leverage decision tree structures [26],
often trading off model complexity for greater transparency. While these techniques offer useful
insights, they fail to bridge the gap between low-level features and high-level, human-understandable
features that might explain the behavior of a model.

One promising avenue for bridging this gap is counterfactual reasoning. Answering what if questions
– such as “Would the diagnosis have changed if a different treatment had been administered?” or
“Would the person have been classified differently if their income were higher?” – plays a central
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Figure 1: (a) Illustration of different model classes: counterfactually consistent models (blue) and
blackbox/concept-based models (yellow). (b) Original input image and corresponding predictions
from each model. (c) Counterfactual predictions: models in the top row predict consistently across
instantiations within the class, while those in the bottom row produce inconsistent predictions.

role in human reasoning and forms the basis of many explanatory and decision-making processes
[1, 16, 17]. Enabling AI systems to reason counterfactually opens the door to more interpretable
models – ones that can not only predict outcomes accurately but also explain their decisions in a
meaningful, human-aligned way.

Recently, concept-based prediction models [7, 13] have been proposed to improve interpretability by
enabling reasoning over human-understandable features. These models aim to answer counterfactual
queries of the form: “Given an input x, how would the model’s prediction change if a feature W were
modified from w to w→?” Such queries allow users to explore the influence of high-level features –
like the presence of a smile or the existence of a tumor – on a model’s prediction, providing a possible
route to assess whether the model reasoning aligns with human expectations.

Despite their appeal, existing concept-based approaches are oblivious to the causal relationships
between features. As a result, they may not reflect the real-world mechanisms or incorporate common-
sense knowledge faithfully. While some recent methods attempt to introduce causal structure into
concept-based models [3], they frequently lack guarantees of counterfactual consistency – that is, the
property that models within the exact class yield consistent answers to the same counterfactual query.

To illustrate this limitation, consider a task of predicting facial attractiveness. Suppose two models, C
and D, from the same concept-based class, represented by the yellow circle in Fig. 1-(a), are trained
on the same dataset. They first will have the identical attribute prediction, for example, both will
predict a lower attractiveness score for the given image (Fig. 1-(c), yellow). However, when they
evaluate the counterfactual question “What would the attractiveness be had the person smiled?”,
model C will maintain the low attractiveness score while model D will raise the attractiveness score
(Fig. 1-(c), yellow). This discrepancy reveals a deeper issue: the model class is not counterfactually
interpretable, as it does not constrain the space of counterfactual responses. In such cases, users have
no principled way to determine which answer to trust, rendering the query effectively unanswerable.
In contrast, the model class in blue is desirable since any pair of models – such as Model A and B –
will give the exact same answer for both attribute and counterfactual predictions. In this case, one
can assert that the attractiveness would be raised had the person smiled, which indicates the model
made the decision based on the feature “Smile” and this is aligned with human understanding [6].
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In this work, we introduce the notion of causal interpretability, which concerns whether a prediction
model can be interpreted consistently across counterfactual scenarios – drawing a connection between
XAI and causal inference [1, 16]. Intuitively, a model class is said to be causally interpretable if all
models within the class yield consistent predictions under counterfactual interventions, as illustrated
in blue in Fig. 1. We then show that a blackbox model, which maps inputs directly to labels, is
never causally interpretable. That is, such models fundamentally lack the structure needed to answer
counterfactual questions. We also demonstrate theoretically that concept-based models [7], which
rely on all observed features for prediction, are also not guaranteed to be causally interpretable.
Interestingly, causal interpretability can be recovered by constraining to use only a subset of features.

Against this background, we develop a general approach for building causally interpretable models
that can answer counterfactual queries by design. Specifically, we propose a complete graphical
criterion for determining whether a model that uses a given set of features for prediction is causally
interpretable with respect to a counterfactual query. This enables the understanding of (i) which
counterfactual questions a given model can answer, and (ii) which models can answer a given counter-
factual question. Our framework also reveals a fundamental tradeoff between causal interpretability
and predictive accuracy. We characterize the unique maximal set of features that preserves causal
interpretability, thereby providing a principled method for building models with maximal expressive
power under interpretability constraints. A notable practical implication is that our approach does not
require full specification of the causal graph or modeling of unobserved confounders; it only involves
the descendants of the target features in the counterfactual query. Experimental results corroborate
the proposed theory. More specifically, our contributions are as follows:

• (Sec. 2) We introduce the notion of causal interpretability (Def. 2), which states whether we can
evaluate the prediction of the model under counterfactual conditions from observational data. Based
on this formulation, we show that a blackbox model is never interpretable (Prop. 1), whereas a
concept-based model is also often not interpretable, in contrast to prior belief.

• (Sec. 3) We develop a graphical criterion that determines whether the model is interpretable
with respect to the query (Thm. 1). We characterize the unique maximal set of features yielding
interpretable architecture (Thm. 2) and provide a practical way of evaluating such queries from the
data (Thm. 3). Finally, these results reveal a fundamental tradeoff between the causal interpretability
and predictive accuracy (Thm. 4).

Preliminary. Here, we introduce notations and terminologies used in the paper. We use bold letters
to denote a set of random variables or their assignments. We use capital letters to denote a random
variable or a random vector (e.g., X) and lower case letters to denote their assignments (e.g., x).

We employ a structural causal model [1, 16] as our semantical framework. A structural causal
model (SCM) M is a 4-tuple →U,V,F , P (U)↑, where U is a set of exogenous variables, V =
{V1, · · · , Vn} is a set of endogenous variables, F = {fV1 , · · · fVn} is a set of functions determining
V as Vj ↓ fVj (PaVj ,UVj ), where PaVj ↔ V \ {Vj} and UVj ↔ U for all Vj ↗ V, and P (U) is a
distribution over U. An SCM M induces a causal diagram G and a distribution over the endogenous
P (V). We use graphical kinship to represent the relationships between the variables. We now define
an SCM that describes a generative process that includes images X and labels prediction Ŷ [14].
Definition 1 (Augmented SCM). An augmented SCM (ASCM) over a generative level SCM M0 =
→U0,V0,F0, P 0(U0)↑ is a tuple M = →U, {V,X, Ŷ },F , P (U)↑ such that

(1) exogenous variables U = {U0,UX};

(2) V = V0 are labeled observed endogenous variables, X is an m-dimensional mixture variable,

and Ŷ is a (predicted) label;

(3) F = {F0, fX, fŶ }, where fX maps from (the respective domains of) V ↘ UX to X and a

classifier fŶ maps from (the respective domains of) the subset of {V,X} to Ŷ ; and

(4) P (U0) = P 0(U0).

An ASCM M represents a sequential generative procedure of latent generative factors (i.e., concepts)
V, the image X, and the label prediction Ŷ . First, the latent features V are generated by the
underlying M0. The induced causal diagram GV is called a latent causal graph (LCG). The high-
dimensional mixture X (e.g., image) is then generated from V (and UX), and subsequently, Ŷ is
generated from the subset of {V,X}, where fŶ is a classifier that predicts the label. We let ! :=
{M : ASCM over M0} be the space of ASCMs. Omitted proofs are provided in Appendix A.2.
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Figure 2: Causal diagrams for different types of predictive models.

2 Causal Intepretability – Foundations

In this section, we formalize the notion of causal interpretability and examine whether existing
approaches could elicit counterfactual questions in a valid manner.

We start by analyzing two important classes of predictive models: blackbox and concept-based

models. As illustrated in Fig. 2a, blackbox prediction (BP) models make a prediction on the label
from the image X (i.e., fŶ : D(X) ≃ D(Ŷ )). This means that a blackbox does not have access
to any of the causal factors that generated the data. In contrast, concept-based prediction (CP)
models predict the label based on the generative factors of the image (i.e., fŶ : D(V) ≃ D(Ŷ )), as
illustrated in Fig. 2b. In other words, the classifier of a concept-based model uses the features to
make the predictions, instead of the image itself. Formally, a class of BP models and a class of CP
models are respectively denoted as !BP and !CP, where !BP := {M ↗ ! | fŶ : D(X) ≃ D(Ŷ )}
and !CP := {M ↗ ! | fŶ : D(V) ≃ D(Ŷ )}. The following examples illustrate the generative
process of BP and CP models.
Example 1 (Blackbox Model). Consider a task of estimating the attractiveness of a human face

represented in an image X. Augmented generative process (ASCM) of the prediction by a BP model

is given as MBP = →U = {UF , US , UC1 , UC2 ,UX}, {{F, S,C},X, Ŷ },FBP, P BP(U)↑, where

FBP =






F ↓ UF ⇐ US

S ↓ US

C ↓ (¬S ⇒ UC1)⇐ (S ⇒ UC2)

X ↓ fX(F, S,C,UX)

Ŷ ↓ fŶ (X),

(1)

Ŷ is the label (attractiveness) prediction, the exogenous variables UF , US , UC1 , UC2 are independent

binary variables, and P BP(UF = 1) = 0.4, P BP(US = 1) = 0.6, P BP(UC1 = 1) = 0.3, P BP(UC2 =
1) = 0.6. The exogenous variable UX (representing other generative factors) can include (or be

correlated to) {UF , US , UC1 , UC2}. The causal diagram induced by MBP is shown in Fig. 2a.

In terms of prediction, the process of obtaining Ŷ has three steps. First, latent generative features

F (gender), S (smiling), and C (high cheekbones) are generated. Then, fX maps the observed

generative features {F, S,C} and unobserved generative factors UX to the images X in the pixel

levels. Finally, the predictor fŶ takes these pixels as input to estimate Ŷ in the corresponding model.

The functions fX and fŶ can be aggregated as Ŷ ↓ fŶ ⇑ fX(F, S,C,UX). This illustrates that the

prediction of Ŷ by a BP model is made based on all observed features {F, S,C} and unobserved

features UX. ↭
Example 2 (Concept-based Model). The main difference between the class of CP models !CP and

the class of BP models !BP is the form of the classifier fŶ . Consider the same generative process

of observed features V0 = {F, S,C}1
and the image X in Ex. 1. Let us consider a CP model

1In practice, the annotations of the features are provided in many real-world datasets across various domains,
e.g., human face [9], medical images [11], and animal species [25]. Otherwise, the common practice is to extract
their annotations with vision-language models [19], which is shown to be effective [13, 28].
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MCP = →U = {UF , US , UC1 , UC2 ,UX}, {{F, S,C},X, Ŷ },FCP, PCP(U)↑, where the generative

process of F, S,C,X is the same as Eq. (1), Ŷ is generated as

Ŷ ↓ fŶ (F, S,C), (2)

and PCP(U) is equal to P BP(U) in Ex. 1. In words, this means that instead of predicting Ŷ based on

pixels (i.e., image X), the classifier fŶ directly predicts Ŷ based on observed features F, S,C. The

causal diagram induced by MCP is shown in Fig. 2b. ↭

Examples 1 and 2 illustrate two different types of predictive models, where the classifier predicts
the label directly from the image X (i.e., !BP) or from the generative features V (i.e., !CP). While
both types have showcased their capability to achieve reasonably high predictive accuracy in many
domains [7, 8, 13], it is unclear at this moment whether we can interpret how they would predict under
counterfactual scenarios, such as “how attractive the person would be had the one been smiling?”.
The following notion of causal interpretability formally states whether the counterfactual questions
can be answered from the model.
Definition 2 (Causal Interpretability). Consider a specific model class !→ ⇓ !, where ! is the

space of ASCMs. We say the class !→
is causally interpretable w.r.t. a query Q if QM1 = QM2 for

⇔M1,M2 ↗ !→
s.t. PM1(V,X, Ŷ ) = PM2(V,X, Ŷ ).

In words, !→ denotes a certain design choice of the models for predicting the label, that is, it is a
space of prediction model candidates. !→, for instance, can be !BP, when we want to predict the label
directly from the image (Fig. 2a), or !CP, when the classifier uses all observed features (Fig. 2b).
For a query Q, we are concerned with the counterfactual questions such as “What if the person had

smiled?”, which is written in counterfactual notion as P (ŶS=1 | X = x), and more generally as
Q(W) := P (ŶW | X).2

In other words, the notion of causal interpretability states whether one can understand the behavior
of the model under different counterfactual conditions. If the model is causally interpretable, the
counterfactuals can be evaluated from the observational data (Fig. 7, left). Otherwise, the model
fundamentally cannot answer the counterfactual question from observational data, and thus, we cannot
interpret their behavior under counterfactual scenarios (Fig. 7, right). We now analyze two types of
predictive models discussed above (i.e., BP model in Ex. 1 and CP model in Ex. 2) and examine their
causal interpretability, i.e., whether they can evaluate counterfactuals from observational data.
Example 3 (Continued from Ex. 1). Consider the BP model MBP in Ex. 1. Let UX includes

another independent variable, namely, UX = {US ,U↑
x }; let the observational quantity P (F =

0, S = 1, C = 1 | X = x) = 1, which means that the face is of a male (F = 0), who is smiling

(S = 1), and with the cheekbones high (C = 1), given in an image X = x. The generative

process of Ŷ is as Ŷ ↓ fŶ ⇑ fX(F, S,C,UX) = 1[S > 0.5]. Consider another BP model

M→
BP

with the same generative process of MBP, but for in M→
BP

, the classifier f
→

Ŷ
is given by:

Ŷ ↓ fŶ ⇑ fX(F, S,C,UX) = 1[US > 0.5]. Since S = US , the two BP models MBP and M→
BP

agrees with the observational data, i.e., PMBP(V,X, Ŷ ) = PM→
BP(V,X, Ŷ ), which will lead to the

same predictions (and corresponding accuracy).

Now, consider the counterfactual quantity "Given the image X = x, would the prediction still be

attractive (Ŷ = 1) had the person not smiled (S = 0)?", namely, Q(S) = P (ŶS=0 = 1 | X = x).
Intuitively, a smaller value of P (ŶS=0 = 1 | X = x) implies the model is more reliable since

changing a face to non-smiling reduces the attractiveness in general based on common sense

knowledge [6]. For the first BP model MBP, Q(S) evaluates as PMBP(ŶS=0 = 1 | X = x) =
1[S = 0 > 0.5] = 0. However, for the second BP model M→

BP
, Q(S) evaluates as PM→

BP(ŶS=0 =
1 | X = x) = 1[US = 1 > 0.5] = 1. Details for these derivations are provided in Appendix A.

Note that each BP model evaluates the counterfactual query in a completely different way, and

the two models are somewhat inconsistent. In practice, if one chooses the class of BP models

!BP for this prediction task, the above counterfactual question cannot be answered correctly, since

2Note that the definition is general in terms of the query Q, which could vary across different domains, e.g.,
natural direct effect in fairness analysis [18].
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two BP models can give an exact opposite answer even if the two models agree perfectly with

the observational distribution and their predictions. In other words, the blackbox models cannot

answer counterfactual Q(S) from observational data, and their behavior cannot be interpreted under

corresponding counterfactual conditions. ↭
One may surmise that Ex. 3 is a pathological case, which for some reason does not allow the
evaluation of counterfactual queries in a consistent manner. The next result shows that this is not the
case for an arbitrary query Q(W) and a latent causal graph GV.
Proposition 1 (Non-interpretability of BP). For any latent causal graph GV, !BP is not interpretable

w.r.t. Q(W) for any W ↔ V.

Given this impossibility results for the class of blackbox models, one may be tempted to believe that
a CP architecture is causally interpretable, as it predicts the label directly from the features where the
unobserved factors UX are filtered out. However, the following illustrates that this is not the case.
Example 4 (Continued from Ex. 2). Consider the CP model MCP in Ex. 2. Similar to Ex. 3, consider

an observational quantity P (F = 0, S = 1, C = 1 | X = x) = 1. Ŷ is generated as follows:

Ŷ ↓ fŶ (F, S,C) = 1[S + C > 0.5]. (3)
Now consider another CP model M→

CP
that is the same as MCP, except for C ↓ f →

C(S,UC1) =

(S↖UC1)⇒UC2 and P (UC1 = 1) = 0.5. We have PMCP(V,X, Ŷ ) = PM→
CP(V,X, Ŷ ) and M→

CP
is

compatible with the graphical constraints in Fig. 2b. Now consider the same counterfactual quantity

P (ŶS=0 = 1 | X = x) in Ex. 3. For MCP, we have PMCP(ŶS=0 = 1 | X = x) = PMCP(CS=0 =
1 | F = 0, S = 1, C = 1) = 0.2. However, for the second CP model, PM→

CP(ŶS=0 = 1 | X =
x) = PM→

CP(CS=0 = 1 | F = 0, S = 1, C = 1) = 0.5. This implies that the two CP models

are also inconsistent w.r.t Q(S). In other words, even prediction using features V, not pixels X,

counterfactual queries induced by the CP models can still differ from each other. ↭

3 A Causal Approach Towards More Interpretable Models

In this section, we establish a principled way of understanding causal interpretability from a graphical
point of view and propose a generalized framework for building causally interpretable models.

3.1 Generalized Concept-based Models

We first define generalized concept-based prediction (GCP) models, a broader class that predicts the
label from an arbitrary set of observed features.
Definition 3 (Generalized Concept-based Prediction). Let T ↔ V be a set of features that is used as

a predictor of the label. That is, a classifier fŶ makes a prediction on a label based on T. We say

such predictive models as generalized concept-based models. A class of GCP models that employ the

features T for prediction is denoted as !GCP(T) := {M ↗ ! | fŶ : D(T) ≃ D(Ŷ )}.

Compared to CP models, GCP models employ a selected set of features T ↔ V as a predictor of the
label, which relaxes the requirement of CP where all features are considered.

The selection of the features T in a GCP model should be specified during the model building stage,
and our goal is to understand the implications of different choices of T and which ones could lead
to causally interpretable models (i.e., satisfying Def. 2). To answer this question systematically, we
introduce a graphical criterion for determining whether a model satisfies causal interpretability.
Theorem 1 (Graphical Criterion). Consider GCP models that employ a set of features T as a predictor

of the label. !GCP(T) is causally interpretable w.r.t. a query Q(W) if and only if T ↔ W↘ND(W).

In words, this result says that a query Q(W) can be evaluated if the model uses the features among
W or non-descendants of W to make a prediction on the label. In other words, the models that use
any descendant of W cannot answer counterfactual question and no guarantee can be provided on
how they would make predictions under the corresponding counterfactual scenarios.3

3Note that for the case of X = T, !BP is not interpretable w.r.t. any Q(W) since X is a descendant of W
for any W → V, generalizing Prop. 1. Similarly, !GCP(T) is also never interpretable if X ↑ T, i.e., hybrid

models that make predictions based on the combination of the image and features.
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Thm. 1 enables one to identify the architectures (associated with T) that are causally interpretable
with respect to given counterfactual queries. Interestingly, the models that are potentially causally
interpretable are not be unique. The following formalizes the notion of admissible architectures.
Definition 4 (T-Admissible Set). We say T is T-admissible w.r.t. Wω = {W1,W2, · · · } if !GCP(T)

is interpretable w.r.t. Q(Wi) for all Wi ↗ Wω. A set of T-admissible sets w.r.t. Wω is denoted as

T-Ad(Wω).

To illustrate, T-admissible set represents model architectures that can answer (potentially multiple)
counterfactual queries Q(W1), Q(W2), · · · . For example, in Fig. 2, eligible models that one can
evaluate Q(S) is GCP models whose classifier employs {S}, {F}, or {S, F} as a predictor of the
label, i.e., T-admissible set corresponds to the query Q({S}) is T-Ad({S}) = {{S}, {F}, {S, F}}.

Given the multiplicity of admissible models, our goal is to find the models that use as many features
as possible to predict the label Ŷ , i.e., maximal T, as it would be beneficial in terms of predictive
accuracy. We denote it as a maximal T-admissible set, which is formally defined below.
Definition 5 (Maximal T-Admissible Set). Suppose S ↗ T-Ad(Wω) and S→ ↙↗ T-Ad(Wω) for any

S→ ⊋ S. We denote such S as Max-T-Ad(Wω).

In other words, a maximal T-admissible set is a T-admissible set that would cease to be T-admissible
if any additional variable were added to it. Identifying a maximal T-admissible set would lead to
a model with maximal predictive power while retaining causal interpretability. One might suspect
that multiple maximal T-admissible sets could exist, making it unclear which to select to maximize
the predictive expressiveness. However, the next result says that this is not the case, since we can
establish the uniqueness of the maximal T-admissible set.
Theorem 2 (Uniqueness of Maximal T-Admissible Set). For the queries Q(Wω), a maximal T-

admissible set is unique and can be written as:

Max-T-Ad(Wω) = ∝Wi↓Wω

(
Wi ↘ND(Wi)

)
. (4)

Also, T ↗ T-Ad(Wω) if and only if T ↔ Max-T-Ad(Wω) .

To illustrate, for the group of queries Q(W1), Q(W2), · · · , the maximal T-admissible set is unique
and it is the intersection of non-descendants of Wi plus Wi. Interestingly, identifying a maximal
T-admissible set only requires the descendants of W and does not rely on the full specification of the
causal graph. For example, given the features {cheekbone, smiling, gender} and the query “What
if the person had smiled?”, it only requires the knowledge of descendants of "smiling", which is
“cheekbone”. This does not rely on the full latent causal graph, which is often challenging to obtain.

So far, we have described how to find causally interpretable models that can answer counterfactual
queries. We now describe a practical way of evaluating such queries from the data.
Theorem 3 (Closed Form). If !GCP(T) is causally interpretable w.r.t. Q(W), the following holds:

P (Ŷw→ | x) =
∑

t

P (Ŷ | w→ ∝T, t \W)P (t | x). (5)

This implies that the counterfactual quantity can be elicited from a two-step prediction – (1) a
classifier P (Ŷ | T) and (2) a feature extractor P (T | X). For example, Q(S) introduced in Ex. 3
can be computed using observational data and the maximal T-admissible set {S, F} as: P (ŶS=0 |
X) =

∑
s,f P (Ŷ | S = 0, f)P (s, f | X). Specifically, {S, F} are extracted from P (S, F | X) and

the prediction is made by classifying P (Ŷ | S = 0, F ), conditioning S = 0. Note that Eq. (5) only
holds when the model is causally interpretable, and it does not hold for non-interpretable ones.

3.2 Fundamental Trade-Off between Causal Interpretability and Accuracy

So far, we have developed the machinery for building causally interpretable models that can answer
counterfactual queries. Now, we discuss which queries can be read from the given predictive model
architecture. The following formalizes such notions of admissible queries.
Definition 6 (W-Admissible Set). We say W is W-admissible w.r.t. T if !GCP(T) is causally

interpretable w.r.t. Q(W). A set of W-admissible sets w.r.t. T is denoted as W-Ad(T).
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Figure 3: (Left) As we want a model to answer more counterfactual queries (W1
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For example, in Fig. 2b, CP model that uses the features {F, S,C} as the predictor of the label
can answer counterfactual queries Q({F}), Q({C}), Q({F, S}), Q({F,C}) and Q({F, S,C}), i.e.,
W-Ad({F, S,C}) = {{F}, {C}, {F, S}, {F,C}, {F, S,C}} by applying Thm. 1. Similarly, in
Fig. 2c, we have W-Ad({S,C}) = {{F}, {S}, {C}, {F, S}, {F,C}, {S,C}, {F, S,C}}. Here,
one might notice that the model using a larger set of features can answer a smaller number of
counterfactual questions. Our next result establishes a trade-off between accuracy and interpretability.
Theorem 4 (Interpretability-Accuracy Trade-Off). The following holds:

(i) If T1 ↔ T2, then W-Ad(T2) ↔ W-Ad(T1).
(ii) If W1

ω ↔ W2
ω, then Max-T-Ad(W2

ω) ↔ Max-T-Ad(W1
ω).

In other words, Thm. 4-(i) states that the counterfactuals that can be evaluated from the model
decrease (W-Ad(T2) ↔ W-Ad(T1)) as the predictors increase (T1 ↔ T2). Similarly, Thm. 4-(ii)
states that the predictive power would decrease (Max-T-Ad(W2

ω) ↔ Max-T-Ad(W1
ω)) as we want

the models to answer more counterfactual queries (W1
ω ↔ W2

ω). This reveals a fundamental trade-off
between causal interpretability and accuracy, where better predictive power would compromise the
interpretability, and vice versa, as illustrated in Fig. 3.

4 Experiments

In this section, we evaluate our framework for estimating counterfactuals and compare it with prior
approaches. Experimental details and additional experimental results are provided in Appendix B.

4.1 Synthetic datasets

We design the BarMNIST dataset where the digits are colored and a bar appears at the top of the
image, as shown in Fig. 4a. Specifically, we consider the features “bar” (B), “digit” (D), and “color”
(C), where D,C are correlated and D has a direct causal effect on B, as illustrated in Fig. 4b. The
true label is generated from all of the features and unobserved factors.

The dataset allows us to compare the estimation of counterfactuals from each model with the ground-
truth. We trained 4 different models, each using T = {B,D,C}, {B,D}, {D,C}, and {D} as
the predictor of the label. As shown in Fig. 4c, the model using T = {B,D,C} achieves the best
accuracy, followed by T = {B,D} and T = {D,C}, and the model using T = {D} shows the
lowest accuracy. On the other hand, the best model (T = {B,D,C}) in terms of accuracy shows a
high estimation error on the counterfactual query of changing the digit. Thm. 1 suggests that any
estimation using observed data cannot capture the true counterfactual prediction of this model, since it
uses B, which is the descendant of D. For the same reason, T = {B,D} is not causally interpretable,
in contrast to T = {D,C} and T = {D}. Our theory (Thm. 2) also suggests that there exists a
unique maximal set of features that maintains causal interpretability, in this case, T = {D,C}.

In Fig. 5, we take a closer look at how these models estimate counterfactuals. As shown in Fig. 5a,
T = {D,C} and T = {D} are admissible models for the counterfactual query of changing the
digit. On the other hand, for changing color (Fig. 5b), all models are admissible and output a correct
estimate of the counterfactual query, since C is not a descendant of any other features.
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(a)

B D C

X Ŷ

(b) (c)

Figure 4: (a) Example images of BarMNIST dataset. (b) Causal diagram of GCP models. Red arrows
represent the possible usage for predicting the label. (c) Interpretability-accuracy trade-off.

(a) Changing digit. (b) Changing color.

Figure 5: Estimation of counterfactual queries. Blue dots and orange marks denote estimation of
counterfactual queries and ground truth value, respectively.

Obs ObsCtf Ctf

Figure 6: Visualization of interpreting counterfactual predictions on CelebA examples.

4.2 Real-world datasets

CelebA dataset [9] contains human face images with the annotations on facial expressions and
attributes, such as “smiling”, “age”, “gender”, etc. We consider a model predicting the label
“attractiveness” and examine how a model makes a prediction under counterfactual conditions
“Would the person look attractive had they smiled?”. In the real world, it is impossible to observe a
counterfactual outcome, but our theory allows us to interpret the behavior of (causally interpretable)
models under counterfactual conditions. Based on Thm. 1, we choose the features that are not
the descendants of smiling. Fig. 6 illustrates the counterfactual prediction of the model using
non-descendant features (i.e., “smiling” and “gender”). We can interpret its behavior under the
counterfactual condition that it predicts a higher attractiveness had the one smiled, which is aligned
with human common sense.

5 Conclusion

In this work, we introduced the notion of causal interpretability, which states whether counterfactual
queries can be evaluated from a model and observational data. By examining commonly used model
classes – blackbox and concept-based models – we demonstrated that neither is causally interpretable.
To this end, we developed a graphical criterion that determines whether the model is interpretable
with respect to the query (Thm. 1). We characterize the unique maximal set of features yielding
interpretable architecture (Thm. 2) and provide a practical way of evaluating such queries from the
data (Thm. 3). Our results reveal a fundamental tradeoff between the causal interpretability and
predictive accuracy (Thm. 4). Theoretical findings are corroborated by the experimental results.

9



References

[1] Elias Bareinboim, Juan D. Correa, Duligur Ibeling, and Thomas Icard. On pearl’s hierarchy and
the foundations of causal inference. In Probabilistic and Causal Inference: The Works of Judea

Pearl, page 507–556. Association for Computing Machinery, New York, NY, USA, 2022.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[3] Gabriele Dominici, Pietro Barbiero, Mateo Espinosa Zarlenga, Alberto Termine, Martin
Gjoreski, Giuseppe Marra, and Marc Langheinrich. Causal concept graph models: Beyond
causal opacity in deep learning. arXiv preprint arXiv:2405.16507, 2024.

[4] Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco
Giannini, Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian
Weller, et al. Concept embedding models: Beyond the accuracy-explainability trade-off.
Advances in Neural Information Processing Systems, 35:21400–21413, 2022.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[6] Simone Horn, Natalia Matuszewska, Nikolaos Gkantidis, Carlalberta Verna, and Georgios
Kanavakis. Smile dimensions affect self-perceived smile attractiveness. Scientific reports, 11
(1):2779, 2021.

[7] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim,
and Percy Liang. Concept bottleneck models. In International conference on machine learning,
pages 5338–5348. PMLR, 2020.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

[9] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes
(celeba) dataset. Retrieved August, 15(2018):11, 2018.

[10] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

[11] Michael Nevitt, David Felson, and Gayle Lester. The osteoarthritis initiative. Protocol for the

cohort study, 1:2, 2006.

[12] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

[13] Tuomas Oikarinen, Subhro Das, Lam M. Nguyen, and Tsui-Wei Weng. Label-free concept
bottleneck models. In The Eleventh International Conference on Learning Representations,
2023.

[14] Yushu Pan and Elias Bareinboim. Counterfactual image editing. In International Conference

on Machine Learning, pages 39087–39101. PMLR, 2024.

[15] Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

[16] Judea Pearl. Causality. Cambridge university press, 2009.

[17] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic
books, 2018.

[18] Drago Plecko and Elias Bareinboim. Causal fairness analysis. arXiv preprint arXiv:2207.11385,
2022.

10



[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

[20] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[21] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international conference on computer vision, pages
618–626, 2017.

[22] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[23] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information

processing systems, volume 30, pages 5998–6008, 2017.

[25] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

[26] Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk,
Sarah Adel Bargal, and Joseph E Gonzalez. Nbdt: Neural-backed decision trees. arXiv

preprint arXiv:2004.00221, 2020.

[27] Eric Wong, Shibani Santurkar, and Aleksander Madry. Leveraging sparse linear layers for
debuggable deep networks. In International Conference on Machine Learning, pages 11205–
11216. PMLR, 2021.

[28] Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark
Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable
image classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 19187–19197, 2023.

11



Supplementary Material

A Proofs and Additional Examples 12

A.1 Derivations in Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A.2 Omitted Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.3 Additional Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B Experiments 17

B.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B.3 Additional Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C Additional Discussions 20

C.1 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A Proofs and Additional Examples

A.1 Derivations in Examples

A.1.1 Derivation in Ex. 3

In Ex. 3, for the first BP model MBP, we evaluate Q(S) from MBP as follows:

PMBP(ŶS=0 = 1 | X = x)

=
∑

f,s,c

PMBP(ŶS=0 = 1 | F = f, S = s, C = c,X = x)PMBP(F = f, S = s, C = c | X = x)

=PMBP(ŶS=0 = 1 | F = 0, S = 1, C = 1,X = x)

=PMBP(fŶ ⇑ fX(F, S,C,UX)S=0 = 0 | F = 0, S = 1, C = 1,X = x)

=PMBP(1[S > 0.5]S=0 = 0 | F = 0, S = 1, C = 1,X = x),

=1[S = 0 > 0.5] = 0.

However, for the second BP model, we evaluate Q(S) from M→
BP as:

PM→
BP(ŶS=0 = 1 | X = x)

=PM→
BP(f →

Ŷ
⇑ fX(F, S,C,UX)S=0 = 0 | F = 0, S = 1, C = 1,X = x)

=PM→
BP(1[US > 0.5]S=0 = 0 | F = 0, S = 1, C = 1,X = x)

=
∑

u

PM→
BP(1[US > 0.5]S=0 = 0 | u)PM→

BP(u | F = 0, S = 1, C = 1,X = x)) (summing over U)

=PM→
BP(1[US > 0.5]S=0 = 0 | US = 1) (S = US)

=1[US = 1 > 0.5] = 1.

12



𝓜′ 𝓜

Data distribution

Ω′ 

P𝓜 = P𝓜′ 

Query

Ω

Q𝓜 = Q𝓜′ 

𝓜′ 𝓜

Data distribution

Ω′ 

P𝓜 = P𝓜′ 

Query

Ω

Q𝓜 ≠ Q𝓜′ 

Figure 7: (Left) !→ is causally interpretable if a query can be uniquely computed from the observa-
tional data. (Right) A query cannot be uniquely computed from the observational data if !→ is not
causally interpretable.

A.1.2 Derivation in Ex. 4

In Ex. 4, for MCP,

PMCP(ŶS=0 = 1 | X = x)

=PMCP(ŶS=0 = 1 | F = 0, S = 1, C = 1,X = x)

=PMCP(ŶS=0 = 1 | F = 0, S = 1, C = 1) (Ŷ ′ X | V)

=
∑

c

PMCP(ŶS=0 = 1 | CS=0 = c)PMCP(CS=0 = c | F = 0, S = 1, C = 1)

=
∑

c

PMCP(ŶS=0 = 1 | CS=0 = c)PMCP(CS=0 = c | F = 0, S = 1, C = 1)

=PMCP(CS=0 = 1 | F = 0, S = 1, C = 1) (Eq. 3)
=0.2

A.2 Omitted Proofs

In this section, we present the proofs of our theoretical results in Sec. 2 and 3. We first formally
introduce the causal diagram induced by an SCM.
Definition 7 (Causal Diagram [1, Def. 13]). Consider an SCM M = →U,V,F , P (U)↑. We construct

a graph G using M as follows:

(1) add a vertex for every variable in V,

(2) add a directed edge (Vj ≃ Vi) for every Vi, Vj ↗ V if Vj appears as an argument of

fVi ↗ F ,

(3) add a bidirected edge (Vj ↓≃ Vi) for every Vi, Vj ↗ V if the corresponding UVi,UVj ↔
U are not independent or if fVi and fVj share some U ↗ U as an argument.

We refer to G as the causal diagram induced by M (or “causal diagram of M” for short). ↭

We then formally introduce the identifiability of a counterfactual query given an observational
distribution and a causal diagram G.
Definition 8 (Counterfactual Identification). A counterfactual query P (y1[x1], y2[x2], ...) is said to be

identifiable from P (V) and G, if P (y1[x1], y2[x2], ...) is uniquely computable from the distributions

P (V) in any SCM that induces G.

Then we start from two lemmas as tool for the proof of Thm. 1.

13



V\T T

X Ŷ
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Figure 8: Diagrams used in the proof of Thm. 1.

Lemma 1. Consider an SCM M over V. Suppose that there exists a path made entirely of bi-directed

edges between Vi, Vj ↗ V in G. Consider two sets A,B ↔ V and A ∝B = ∞. Let the intervened

values are not consistent with the factual values, namely, b ↙↔ v. Then the query P (ab | v) is

identifiable from P (V) and G if and only if A ↔ ND(B), where ND(B) = ∝Bi↓BND(Bi).

Proof. (∈) Suppose A ↔ ND(B). We have P (ab | v) = P (a | v) = 1[a = v] which implies that
P (ab | v) is uniquely computable.

(∋) Suppose there exists A ↗ A such that A ↗ Des(B). By Thm 3 in [Correa et al., 2021],
P (ab | v) is an inconsistent factor since B ↔ V and b ↔ v, and thus, it is not identifiable from
P (V).

Lemma 2 (Lemma 1, Correa et al., 2021). Consider an SCM over V induce observational distri-

bution P (V) and diagram G. Suppose A2 takes input as A1. Then
∑

a1
P (A1[b1], A2[b2]|V, ...) is

identifiable if and only if P (A1[b1], A2[b2]|V, ...) is identifiable.

Now, we are ready to proceed to the proof of Thm. 1.
Theorem 1 (Graphical Criterion). Consider GCP models that employ a set of features T as a predictor

of the label. !GCP(T) is causally interpretable w.r.t. a query Q(W) if and only if T ↔ W↘ND(W).

Proof. According to Defs 2, 3 and 8, this is equivalent to prove that query P (ŷw→ | x) is identifiable
iff T ↔ ND(W) ↘W given the observational distribution P (V,X, Ŷ ) and the diagram GAug over
{V,X, Ŷ } (shown in Fig. 8). To illustrate, the diagram G over V is an arbitrary given DAG; for any
Vi ↗ V, Vi point to X and bi-directed connected to X; only a subset T ↔ V point to Ŷ . Denote
Z = T\W.

P (ŷw→ | x)

=
∑

v

P (ŷw | v,x)P (v | x) (summing over V)

=
∑

v,t→→

P (ŷw→ | t→w,v,x)P (t→w | v,x)P (v | x) (summing over Tw→ in Mw→world)

=
∑

v,t→→

P (ŷw→ | t→→w→)P (t→→w→ | v,x)P (v | x) (Ŷw→ ′ {V,X} | Tw→)

=
∑

v,t→→

P (ŷw→ | z→→w)P (z→→w→ | v,x)P (v | x) (consistency) (6)

=
∑

v,z→→

P (ŷw→ | z→→w→)P (z→→w→ | v,x)P (v | x) (summing over T ↘W)

=
∑

v,z→→

P (ŷ | z→→,w)P (z→→w→ | v,x)P (v | x) (do-calculus [15]) (7)

Eq. 6 holds since the T ∝W should be consistent with the intervened value in w; Eq. 6 holds since
Ŷw are independent with X and V since all parents of Ŷw→ (which is Tw→ ) are conditioned on. Eq. 6
holds due to Ŷ ′ W | T in GW, where GAug

W
is the graph removing outgoing edge of W. Using

do-calculus, we have:
P (ŷw→ | z→→w→) = P (ŷ | z→→,w→). (8)
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We will prove that Eq. 7 is identifiable if and only if T ↔ ND(W)↘W, which is equivalent to prove
Eq. 7 is identifiable iff Z ↔ ND(W) since Z T ∝W. According to Eq. 7, the only undermined
term is P (z→→w→ | v,x). Since V and X are bi-directly connected, Lemma 1 suggests P (z→→w→ | v,x)
is identifiable iff Z ↔ ND(W). Then, P (ŷ | z→→,w→)P (z→→w→ | v,x)P (v | x) is identifiable iff
Z ↔ ND(W). According to Lemma 2, Eq. 7 is identifiable iff T ↔ ND(W) ↘W.

Proposition 1 (Non-interpretability of BP). For any latent causal graph GV, !BP is not interpretable

w.r.t. Q(W) for any W ↔ V.

Proof. For any latent causal graph GV and any W ↔ V, we have X ↔ De(W) \W. Therefore, for
the same reason in Thm. 1, Q(W) = p(ŶW | X) is not identifiable from P (X,V, Ŷ ).

Theorem 2 (Uniqueness of Maximal T-Admissible Set). For the queries Q(Wω), a maximal T-

admissible set is unique and can be written as:

Max-T-Ad(Wω) = ∝Wi↓Wω

(
Wi ↘ND(Wi)

)
. (4)

Also, T ↗ T-Ad(Wω) if and only if T ↔ Max-T-Ad(Wω) .

Proof. (i) First, we will show that S := ∝Wi↓Wω

(
Wi ↘ND(Wi)

)
is a T-admissible set w.r.t

Q(Wω). For each Wi ↗ Wω, we have

∝Wi↓Wω

(
Wi ↘ND(Wi)

)
↔ Wi ↘ND(Wi).

Therefore, by Thm. 1, ∝Wi↓Wω

(
Wi ↘ND(Wi)

)
is a T-admissible set w.r.t Q(Wi) for all Wi ↗

Wω. Thus, we have S ↗ T-Ad(Wω).

(ii) Now, we will show that S is a maximal T-admissible set w.r.t Wω. Suppose there exists S→ such
that S→ ↗ T-Ad(Wω) and S→ ⊋ S. Since S→ ↗ T-Ad(Wω), S→ ↗ T-Ad(Wi) for all Wi ↗ Wω.
Hence,

S→ ↔ Wi ↘ND(Wi) for all Wi ↗ Wω.

Therefore, S→ ↔ ∝Wi↓Wω

(
Wi ↘ND(Wi)

)
= S, which contradicts S→ ⊋ S. Therefore, S is a

maximal T-admissible set w.r.t Wω.

(iii) Now, we will show that S is a unique maximal T-admissible set. Suppose there exists another
maximal T-admissible set S→. Since S→ ↗ T-Ad(Wω), we have S→ ↔ S by the same reason in (ii).
If S→ ⫅̸ S, then it contradicts that S→ is a maximal T-admissible set, since S is a T-admissible set.
Therefore, we have S = S→. In other words, a maximal T-admissible set is unique and can be written
as Max-T-Ad(Wω) = ∝Wi↓Wω

(
Wi ↘ND(Wi)

)
.

(iv) Now, we will show that T ↗ T-Ad(Wω) if and only if T ↔ Max-T-Ad(Wω). Suppose
T ↗ T-Ad(Wω). Then, by (ii), we have T ↔ ∝Wi↓Wω

(
Wi ↘ND(Wi)

)
. Also, we showed

that Max-T-Ad(Wω) = ∝Wi↓Wω

(
Wi ↘ND(Wi)

)
. Therefore, we have T ↔ Max-T-Ad(Wω).

Now, suppose that T ↔ Max-T-Ad(Wω). We have T ↔ ∝Wi↓Wω

(
Wi ↘ND(Wi)

)
, and thus,

T ↔ Wi ↘ ND(Wi) for all Wi ↗ Wω. Therefore, T ↗ T-Ad(Wi) for all Wi ↗ Wω, and thus,
T ↗ T-Ad(Wω).

Theorem 3 (Closed Form). If !GCP(T) is causally interpretable w.r.t. Q(W), the following holds:

P (Ŷw→ | x) =
∑

t

P (Ŷ | w→ ∝T, t \W)P (t | x). (5)

Proof. From Eq. 7, we have

P (ŷw | x) =
∑

v,z→→

P (ŷ | z→→,w→)P (z→→w→ | v,x)P (v | x). (9)
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Note that this equation is identifiable if only if Z ↔ W ↘ND(W). Then

=
∑

v,z→→

P (ŷ | z→→,w→)P (z→→w→ | v,x)P (v | x)

=
∑

v,z→→

P (ŷ | z→→,w→)1[z→→ = v]P (v | x) (Lemma. 1)

=
∑

v

P (ŷ | t \w,w→)P (v | x) (where z = (t \w) ↗ v)

=
∑

v

P (ŷ | t \w,w→ ∝ t)P (v | x) (Y ′ W \T | T)

=
∑

t

P (ŷ | t \w,w→ ∝ t)P (t | x). (10)

This conclude P (Ŷw | x) =
∑

t P (Ŷ | w→ ∝T, t \W)P (t | x) since Eq. 10 holds for any t and
w.

Theorem 4 (Interpretability-Accuracy Trade-Off). The following holds:

(i) If T1 ↔ T2, then W-Ad(T2) ↔ W-Ad(T1).
(ii) If W1

ω ↔ W2
ω, then Max-T-Ad(W2

ω) ↔ Max-T-Ad(W1
ω).

Proof. (i) Let T1 ↔ T2. Suppose W ↗ W-Ad(T2). By Def. 6 and Thm. 1, we have T2 ↔
W ↘ ND(W). Since T1 ↔ T2, it follows that T1 ↔ W ↘ ND(W). Therefore, by Def. 6 and
Thm. 1, W ↗ W-Ad(T1). Thus, for all W ↗ W-Ad(T2), we have W ↗ W-Ad(T1). Hence,
W-Ad(T2) ↔ W-Ad(T1).

(ii) Let W1
ω ↔ W2

ω. Then, we have ∝Wi↓W2
ω

(
Wi ↘ND(Wi)

)
↔ ∝Wi↓W1

ω

(
Wi ↘ND(Wi)

)
.

Therefore, we have Max-T-Ad(W2
ω) ↔ Max-T-Ad(W1

ω) by Thm. 2.

A.3 Additional Examples

The following example illustrates how GCP and CP models compare.
Example 5 (GCP). Consider the generative process of observed concepts V0 = {F, S,C} and the

image X, as in Ex. 1 (BP model) and Ex. 2 (CP model). Consider a GCP model MGCP = →U =
{UF , US , UC1 , UC2 ,UX}, {{F, S,C},X, Ŷ },FGCP, PGCP(U)↑, where

FGCP =






F ↓ UF ⇐ US

S ↓ US

C ↓ (¬S ⇒ UC1)⇐ (S ⇒ UC2)

X ↓ fX(F, S,C,UX)

Ŷ ↓ fGCP

Ŷ
(S, F )

(11)

and PGCP(U) is equal to PCP(U) in Ex. 2. The causal diagram induced by GCP model MGCP is

shown in Fig. 2c. To illustrate, instead of predicting the label based on pixels in images X (BP

models) or all observed features {F, S,C} (CP models), GCP model makes a prediction using a

selected subset of features T = {S, F} (i.e., smiling and gender) in this case. ↭

F S C P (F, S,C) = 1

0 0 0 0.168
0 0 1 0.072
0 1 0 0.096
0 1 1 0.144
1 0 0 0.112
1 0 1 0.048
1 1 0 0.144
1 1 1 0.216

Table 1: Probability table in Ex. 6.

The following example illustrates the case where the GCP
model is causal interpretable.
Example 6 (Continued from Ex. 5). Consider !CP in Ex. 4.

Thm. 1 suggests !CP is not interpretable w.r.t. to query

Q(S) P (YS=0 | X). This is because C ↗ De(S), where

W = {S}, i.e., the prediction of Ŷ is made based on C, a

descendant of S. In contrast, !GCP({S,F}) in Ex. 5 is said

to be causally interpretable w.r.t. to query P (YS=0 | X)
since fGCP

Ŷ
only takes T = {S, F} ↔ S ↘ ND(S) as

input. To illustrate, let us consider the GCP model MGCP
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in Ex. 5. Similar to Examples 3 and 4, let the observational

quantity P (F = 0, S = 1, C = 1 | X = x) = 1 and let fŶ be:

Ŷ ↓ fGCP

Ŷ
(S, F ) = 1[S + F > 0.5]. (12)

Now, consider another GCP model

M→
GCP

= →U→ = {U →
F , U

→
S1
, U →

S1
, U →

C1
, U →

C2
,U→

X}, {{F, S,C},X, Ŷ },FGCP
→
, PGCP

→
(U)↑, (13)

where

FGCP
→
=






F ↓ U →
F

S ↓ ((¬U →
F ) ⇒ U →

S1
)⇐ (U →

F ⇒ U →
S2
)

C ↓ (¬S ⇒ U →
C1

)⇐ (S ⇒ U →
C2

)

X ↓ fX(F, S,C,UX)

Ŷ ↓ 1[S + F > 0.5]

(14)

and P (U →
F = 1) = 0.52, P (U →

S1
= 1) = 0.5, P (U →

S2
= 1) = 9/13, P (U →

C1
= 1) = 0.5, P (U →

C2
=

1) = 0.6. It is verifiable that PMGCP(V) = PM→
GCP(V) as shown in Table 1. Since fŶ is the same in

both MGCP and M→
GCP

, PMGCP(V, Ŷ ) = PM→
GCP(V, Ŷ ). Let the distribution of UX satisifies that

PMGCP(V,X, Ŷ ) = PM→
GCP(V,X, Ŷ ). M→

CP is compatible the graphical constraints induced by

the model in Fig. 2b. Notice that f →
F , f

→
S , f

→
C in M→

GCP
are totally different to fF , fS , fC in MGCP.

For the first GCP model MGCP,

PMGCP(ŶS=0 = 1 | X = x) = PMGCP(FS=0 = 1 | F = 0, S = 1, C = 1) = 0.

Similarly, for the second GCP model M→
GCP

,

PM→
GCP(ŶS=0 = 1 | X = x) = PM→

GCP(CS=0 = 1 | F = 0, S = 1, C = 1) = 0.

This shows that the two GCP models are consistent with the query. In other words, if one uses the

features {S, F} to predict Ŷ , the model architecture in Fig. 2c is guaranteed to provide a unique

answer for the counterfactual question "What would the attractiveness prediction be had the person

not smiled?" (i.e., P (YS=0 | X)). Then one can trust the counterfactual quantities induced by any

model with this architecture. ↭

B Experiments

In this section, we describe the details for the experiments and provide additional experimental
results.

B.1 Dataset

B.1.1 BarMNIST

For BarMNIST experiment discussed in Sec. 4.1, the data generating process is as follows:

F =






D ↓ UD

C ↓ UD ⇐ UC

B ↓ (UB1 ⇒D)⇐ (UB1 ⇒ UB2)⇐ ((¬UB1) ⇒ UB2)

X ↓ fX(B,D,C,UX)

Y ↓
(
(D ⇐ C) ↖B

)
⇐ UY ,

(15)

the exogenous variables UD, UC , UB1 , UB2 , UB3 , UY are independent binary variables, and P (UD =
1) = 0.5, P (UC = 1) = 0.4, P (UB1 = 1) = 0.9, P (UB2 = 1) = 1/18, P (UB3 = 1) =
0.5, P (UY = 1) = 0.1.

Following this process, we generated 60,000 images and corresponding labels, where each image is
annotated with 3 binary features, i.e., bar (B), color (C), and digit (D). Here, D = 0 represents the
digits from 0 to 4 and D = 1 represents the digits from 5 to 9.
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(a) Causal diagram. (b) Estimation of counterfactuals.

Figure 9: (a) Causal diagram of GCP models. Red arrows represent the possible usage for predicting
the label. (b) Estimation of counterfactual queries. Blue dots and orange marks denote estimation of
counterfactual queries and ground truth value, respectively.

B.1.2 CelebA

CelebA dataset [9] contains 202,599 celebrity facial images, where each image is annotated with 40
different attributes. In our experiments, we used the attribute “attractiveness” as the label, where the
label and all other features are binary.

B.2 Experimental Details

In BarMNIST, we used ResNet18 for the feature extractor. For the classifier, we used a three-layer
MLP with the hidden dimension of 32 and leakyrelu activation. We set the batch size to 1024 and
trained the models for 100 epoch. We used Adam optimizer with a learning rate of 0.0003.

In CelebA, we used ResNet34 for the feature extractor and used linear classifier. We set the batch
size to 512 and trained the models for 100 epochs. We used SGD optimizer with the learning rate of
0.001. We resized the image with center crop into 64△64 for training.

For the training of our model and baselines, we used binary classification loss for both the feature
extractor and the classifier, where they are trained simultaneously in an end-to-end manner. All
experimental results are averaged over 5 independent runs. We report a standard error as the error
bar in Figs. 5, 9 and 10. All experiments are conducted on a single NVIDIA A100 GPU. For
the implementation, we utilized publicly available code from [4]. We used gpt-4o to generate
the counterfactual images shown in Figs. 6 and 10 to provide an intuitive understanding of the
counterfactual questions.

B.3 Additional Experimental Results

B.3.1 BarMNIST

To validate our theory with a different graph structure, we consider a causal diagram in Fig. 9a where
the goal is to predict the digit D from the image. The data generating process is as follows:

F =






B ↓ UB

C ↓ B ↖ UC1 ⇐ UC2

D ↓ (B ↖ C)⇐ UD

X ↓ fX(B,D,C,UX),

(16)

where the exogenous variables UB , UC1 , UC2 , UD are independent binary variables, where P (UB =
1) = 0.6, P (UC1 = 1) = 0.5, P (UC2 = 1) = 0.1, P (UD = 1) = 0.1.

The baseline model uses the features B and C for predicting the label, and our model uses B for
making a prediction. Our theory (Thm. 1) suggests that our model is causally interpretable, but not
the baseline which uses C, a descendant of B. We compare our model and baselines for estimating
the counterfactual prediction of the model, where the query is to change the bar, i.e., P (D̂B=0 | x).
Fig. 9b illustrates the estimation of counterfactual queries (blue dots) and ground truth values (orange
marks). This shows that our model correctly estimates counterfactual queries. In contrast, the
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Ours Baseline 1 Baseline 2

Query:  
“Would the person look attractive 

had they been smiling?”

P( ̂YS=1 = 1 ∣ x)

Smile → Cheekbones 
Smile → Mouth Opened 

(b) Population-level statistics

(c) Instance-level examples

Smiling does not 
increase attractiveness

(a) Query & causal prior
Image Counterfactual

Figure 10: (a) We examine the prediction of the models under counterfactual condition. We use
causal prior knowledge that smiling has causal effects on the features “cheekbones” and “opened
mouth”. (b) Average difference between the estimated counterfactual prediction and the prediction
on the observed (factual) image. (c) Qualitative examples for our model and baselines.

estimation of the baseline significantly differs from the ground truth. This corroborates our theory
that our estimation can properly interpret the counterfactual behavior of the causally interpretable
models, but it is not possible for non-interpretable ones.

B.3.2 CelebA

Here, we provide a detailed analysis of CelebA experiments in Sec. 4.2. Fig. 10-(a) illustrates the
counterfactual question and causal prior we utilized to construct our model. Specifically, we leverage
the common-sense knowledge that smiling has direct causal influence to the features “cheekbones”
and “opened mouth”. To construct our model, we choose features that are non-descendants of smiling,
specifically “smile” and “gender” as feature set V. Baselines include descendant features. In Fig. 10,
baseline 1 uses the features “smiling”, “gender”, and “cheekbones” and baseline 2 uses the features
“smiling”, “gender”, “cheekbones”, and “opened mouth”.

Fig. 10-(b) shows the average difference between the estimated counterfactual prediction and the
prediction on the observed image. Fig. 10-(c) shows qualitative examples comparing our method and
baselines. The first column in Fig. 10-(c) shows the input image, and the second column illustrates
the counterfactual image, as a reference to provide a better understanding of the counterfactual query.

The theory suggests that a causally interpretable model can properly estimate its prediction under
counterfactual conditions. As shown in Fig. 10-(b) and (c), our model, which is causally interpretable,
consistently increases the attractiveness across the instances, which is also aligned with human
reasoning. In contrast, as illustrated in Fig. 10-(c), the estimation of the baselines (which use similar
feature set as ours) shows that smiling often does not increase attractiveness (red boxes). In fact, our
theory suggests that it is not possible to interpret the counterfactual behavior of non-interpretable
models using only observational data, and any attempts to estimate it would lead to inconsistent
results.
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