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Abstract

The tension between rational and irrational behaviors in human decision-making
has been acknowledged across a wide range of disciplines, from philosophy to
psychology, neuroscience to behavioral economics. Models of multi-agent in-
teractions, such as von Neumann and Morgenstern’s expected utility theory and
Nash’s game theory, provide rigorous mathematical frameworks for how agents
should behave when rationality is sought. However, the rationality assumption
has been extensively challenged, as human decision-making is often irrational,
influenced by biases, emotions, and uncertainty, which may even have a positive
effect in certain cases. Behavioral economics, for example, attempts to explain
such irrational behaviors, including Kahneman’s dual-process theory and Thaler’s
nudging concept, and accounts for deviations from rationality. In this paper, we
analyze this tension through a causal lens and develop a framework that accounts
for rational and irrational decision-making, which we term Causal Game Theory.
We then introduce a novel notion called counterfactual rationality, which allows
agents to make choices leveraging their irrational tendencies. We extend the notion
of Nash Equilibrium to counterfactual actions and Pearl Causal Hierarchy (PCH),
and show that strategies following counterfactual rationality dominate strategies
based on standard game theory. We further develop an algorithm to learn such
strategies when not all information about other agents is available.

1 Introduction

Decision-making in multi-agent systems (MAS) is a critical problem with broad applications across
disciplines such as economics, social sciences, political science, distributed systems, robotics, and
more recently, in aligning AI systems with human preferences. At its core, such decision-making
involves taking into account multiple agents – individuals, autonomous systems, or organizations
– each with their own objectives, preferences, and constraints, to make coherent and coordinated
decisions within complex, dynamic environments. The complexity of decision-making in MAS arises
from the interplay of several factors, including uncertainty, inherent biases, conflicting objectives,
and the limitations of the agents’ computational and observational capabilities.

Von Neumann and Morgenstern [45] reformulated and popularized expected utility theory [35], laying
the foundation for rational decision-making, where agents select actions to maximize their expected
utility. Since then, Game Theory (GT) has become central to MAS, with models, such as Nash
equilibrium [29], cooperative game theory [38], evolutionary game theory, and Bayesian games [16],
offering tools to analyze scenarios where agents’ choices impact one another. Although rational
decisions are grounded in systematic analysis and objective reasoning, human choices are often
influenced by cognitive biases, emotions, social factors, and various unobserved factors that lead
to seemingly irrational outcomes. Sometimes, irrational or naive choices can even result in better
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Figure 1: (a) Y1, Y2 as a function of U1, U2, X1, X2 (b) To be rational or not to be rational, that is the
question.

outcomes than rational ones, a phenomenon known as paradox of rationality [17, 7, 5]. Behavioral
economics seeks to model such deviations from rationality, with models such as loss aversion [21],
anchoring [42], framing of choices [22], social preferences [11], and emotions [28]. Kahneman [20]
also advanced and popularized dual-process theory [46, 39], which posits two cognitive systems: a
fast automatic System 1 and a slow deliberate System 2. While these approaches help explain aspects
of irrational human decision-making, the broader question of when and how such unobserved biases
can be strategically leveraged in MAS remains largely unexplored.

In this work, we make a significant step towards addressing this gap by proposing a framework rooted
in causal modeling [31, 4]. Human decisions are often guided by causal structures [44, 40, 30], and
actions can be viewed as interventions [13]. Building on these insights, we model the environment
and the agent’s decision-making process as an interplay between exogenous and endogenous factors,
represented as a structural causal model (SCM). SCMs have been used successfully in the context of
decision-making, both for single-step bandit problems [3, 48] and for multistep RL settings [27, 37],
as surveyed in [2]. The advantage of such modeling is not only computational but more fundamental.
Consider the example of Greedy Casino in Bareinboim et al. [3], where a randomized control trial
(RCT) suggests that the expected payoff is higher than the realized payoff of players following their
natural instincts (irrational behavior). One may naturally surmise that, given the superiority of the
automated version based on RCTs, humans and their irrationality could be removed from the loop.
However, players could enact a counterfactual randomization procedure that exploits their natural
biases, which surprisingly led to payoffs exceeding those based on the RCT.

Building on these insights, we model MAS through a causal lens and show that existing game models
may not capture similar fundamental features of the decision-making process. This framework models
the interactions of agents within a system through the different layers of PCH [4]. As a consequence,
an agent will have the capability to act rationally (following Nash’s prescription), instinctively, or as
some mixture of both. We introduce the notion of counterfactual rationality to formally determine
when it is advantageous for agents to act irrationally and when it is better to avoid doing so. The next
example illustrates why this task is nontrivial.

Example 1.1 (Causal Prisoner’s Dilemma (CPD)). Two thieves are suspected of a crime, but due to
insufficient evidence, they cannot be convicted outright. Now, they have a choice to make – either
remain silent (cooperate, C) or betray the other (defect, D). We denote the choices by variables X1

and X2, and cooperation and defection by the values 0 and 1, respectively. The thieves’ decisions are
influenced by external circumstances, represented by variables U1 and U2, which capture factors such
as the temperament of police officers, the competence of legal defense, new evidence or witnesses
emerging, and even the disposition of the judge and the jury. Although these factors cannot be
explicitly measured by the prisoners, they may subconsciously shape their decisions.

Each prisoner has a natural ability to assess their circumstances, denoted by R1 and R2. If prisoner
i has an accurate reading of their situation (Ri = 1), they choose to cooperate (Xi = 0) if the
circumstances are favorable (Ui = 1), and defect when they are adversarial (Ui = 0); conversely, if
they have a poor reading of their situation (Ri = 0), they defect when circumstances are good, and
cooperate when circumstances are bad. For prisoner i, their instinctive or natural choice is modeled
as: Xi → fX(Ri, Ui) = Ri ↑ Ui, where ↑ is the exclusive-or operator. We note that the variables
U1, U2, R1, R2 and the function fX are determined by nature and are unknown to the prisoners.
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Now, we analyze two scenarios, M1 and M2. In M1, the prisoners have a good reading of their
situation (R1 = R2 = 1), while in M2, they misjudge their circumstances (R1 = R2 = 0). In both
cases, P (Ui = 0) = 0.6 for i ↓ {1, 2}. The outcome Y = (Y1, Y2) of their decisions is a function
of U1, U2, X1 and X2 as shown in Fig. 1a. For example, when the situation is favorable for both the
prisoners (U1 = 1, U2 = 1) and they cooperate (X1 = 0, X2 = 0), their payoff is (0, 0). However, if
circumstances are favorable for Prisoner 1 and not for Prisoner 2 (U1 = 1, U2 = 0), and Prisoner 1
defects while Prisoner 2 cooperates (X1 = 1, X2 = 0), their payoff is (0,↔8).

If both prisoners ignore their intuition and search for the optimal strategy, the situation corresponds
to the classical Prisoner’s Dilemma, where the payoff for the actions X1 = x1, X2 = x2 is given by:

∑

u1,u2,y

Y · P (u1, u2)P (Y | x1, x2, u1, u2) (1)

Notably, both scenarios M1 and M2 lead to the same Prisoner’s Dilemma (PD) game, as shown in the
2↗ 2 payoff table at the bottom of Fig. 1b. However, if both prisoners rely on their natural instincts,
their expected payoff is (0, 0) in M1 and approximately (↔2.4,↔2.4) in M2. This is illustrated in
Fig. 1b, where X →

1 and X
→
2 denote the players acting based on their natural intuition (shown in the top

row). The situation presents a new dilemma – it is better to follow natural instincts and be irrational
in M1, whereas it is better to be rational and ignore intuition in M2.

This example raises a fundamental question: when is it better to follow natural intuition and when is
it better to override it and follow Nash’s prescription? In this paper, we explore the tension between
rational and instinctive behavior through a causal lens and derive from first principles how agents
should deliberate and make decisions, thus addressing the so-called ‘paradox of rationality’ (see
Appendix A). Specifically, we outline our technical contributions as follows:

1. We formalize a class of games that combine rational and irrational behavior (Def.2.10) and
show that it strictly generalizes traditional Normal Form Games (Thm.2.11).

2. We introduce a new family of counterfactual strategies, prove the existence of equilibrium
(Thm.3.5), and show that these strategies can outperform other strategies (Thm.3.6).

3. We develop an algorithm CTF-Nash-Learning (Alg. 2) that learns the payoff matrix in
the counterfactual action space and identifies equilibria, even when the actions of the other
agents are not fully observed.

Preliminaries. In this section, we introduce the notations and definitions used throughout the paper.
We use capital letters to denote random variables (X) and small letters to denote their values (x). DX

denotes the domain of X . |S| denotes the cardinality of the set S. The basic framework of our model
resides on Structural Causal Models [31]. An SCM M is a tuple ↘U,V,F , P (U)≃, where V and U
are sets of endogenous and exogenous variables, respectively. F is a set of functions fV determining
the value of V ↓ V, that is, V → fV (Pa(V ),UV ), where PaV ⇐ V and UV ⇐ U. Naturally, M
induces a distribution over the endogenous variables, P (V), called observational or L1 distribution.
An intervention on a subset X ⇐ V, denoted by do(x) is an operation where values of X are set
to x, replacing the functions {fX : X ↓ X}. For an SCM M , Mx denotes the model induced by
the operation do(x) and Px(Y) or P (Yx) denotes the probability of Y in Mx. Such distributions
are called interventional or L2 distributions. For further details and discussions on counterfactual
distributions, refer to Appendix A.1 and Bareinboim et al. [4, Sec.1.2]. Additional background and
examples on decision-making in single-agent causal systems can be found in Bareinboim et al. [2]
and Appendix A.5, along with comparisons to related work [15, 12] in AppendixA.

2 Causal Normal Form Games

In this section, we model the interaction of multiple agents in a system through the language of SCMs
and PCH layers. Here, we generalize the concepts introduced in [2] to multi-agent settings. We first
define a set of action nodes and reward signals for the agents in the system along with the SCM.
Definition 2.1 (Causal Multi-Agent System). A Causal Multi-Agent System (CMAS) is a tuple
↘M,N,X,Y≃, where (i) M : ↘U,V,F ,P≃ is an SCM, (ii) N is the set of n agents, (iii) X =
(X1, . . . ,Xn) is a tuple of action nodes with disjoint Xi,Xj ⇒ V for i, j ↓ [n], i ⇑= j, and (iv)
Y = (Y1, . . . ,Yn) is the ordered set of reward signals, with Yi ⇐ V \X for all i ↓ [n]. ↭
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Figure 2: (a) Illustration of decision flow fX (b) It is not always optimal to jump to L3 policy

A CMAS is essentially an SCM with a set of action nodes X, each controlled by one of the n agents.
In addition, the system includes reward variables, Y, representing the feedback each agent receives
based on their actions and the underlying causal mechanism.
Example 2.2. Consider the CPD presented in Ex. 1.1. The SCM M corresponding to scenario
M2 is defined as: (i) U = {U1, U2, R1, R2}, V = {X1, X2, Y1, Y2}, (ii) Xi = Ri ↑ Ui for
i ↓ {1, 2}. Y1, Y2 as a function of U1, U2, X1, X2 are shown in Fig. 1a, and (iii) P (Ui = 1) =
0.4, P (Ri = 0) = 1 for i ↓ {1, 2}. The CMAS can now be defined as ↘M = M, N = {1, 2},X =
({X1}, {X2}),Y = ({Y1}, {Y2}). ↭

Now, we define different forms of actions that an agent may take in such a system. First, we define
the different action and policy spaces and then explore how the action spaces are related.
Definition 2.3 (L1 action). Given a CMAS ↘M,N,X,Y≃, an L1 action of an agent i is the one in
which the value of their action variables Xi is determined by the natural mechanism fXi ↓ F . ↭

We will also call such actions natural actions and denote them by a0. Note that, while performing
a0, an agent does not know anything about the underlying SCM nor do they deliberately change any
mechanism of action variable in the system. The L1 action space is thus A1 = {a0} and the L1

policy space is also a singleton set !1 = {a0}.
Example 2.4. Consider the CMAS presented in Ex. 2.2. The natural action is when the values of
X1 and X2 are determined by their natural function, X1 = R1 ↑ U1, X2 = R2 ↑ U2 The expected
payoff when both the agents are following their natural intuition is then given by

∑

u1,u2,x1,x2,y

y · P (u1, u2)P (x1 | u1)P (x2 | u2)P (y | u1, u2, x1, x2) ⇓ (↔2.4,↔2.4) (2)

In traditional game-theoretic sense, an agent can intervene on the system via atomic interventions
(setting action variables to fixed values based on context) [31], or soft interventions (sampling actions
from a distribution) [9]. Next, we define L2 actions and the associated policy space.
Definition 2.5 (L2-action). Given a CMAS ↘M,N,X,Y≃, L2 action of an agent i is a hard interven-
tion do(x), where x ↓ DXi . ↭

Hence, if an agent i performs do(xi) in the SCM M , then the natural mechanism fXi is replaced by
Xi → xi. The set of such L2 actions is denoted by A2, and an L2 policy is a distribution over A2.
Example 2.6. Consider the CMAS introduced in Ex. 2.2. L2 action is when an agent performs
an intervention, that is, setting their action variable to a particular value. If Player 1 is playing 0
and Player 2 is playing 1, then the assignment of the variables are given by X1 → 0, X2 → 1 and
U1, U2, R1, R2 are sampled from P (U) as in Ex. 2.2. Similarly, Y1, Y2 are determined by Fig. 1a.
For instance, the expected payoff of the strategy (do(X1 = 0), do(X2 = 1)) will then be given by

∑

u1,u2,y

y · P (u1, u2)P (y | u1, u2, X1 = 0, X2 = 1) ⇓ (↔7.0,↔0.5) (3)

It is also possible for one agent to perform an L2 action and the other to perform an L1 action. For
instance, the payoff the strategy (do(X1 = 1), a0) is given by

∑

u1,u2,x2,y

y · P (u1, u2)P (x2 | u2)P (y | u1, u2, X1 = 1, x2) ⇓ (0,↔8.9) (4)

4



-2.4, -2.4 -1.2, -2.6 -8.9, 0 -7.7, -0.2

-2.6, -1.2 -1.0, -1.0 -7.0, -0.5 -5.3, -0.2

0, -8.9 -0.5, -7.0 -1.9, -1.9 -2.4, 0

-0.2, -7.7 -0.2, -5.3 0, -2.4 0, 0

a

b
c

d

Figure 3: Change of Equilibrium with change of policies in Causal Prisoner’s Dilemma.

In many cases, an agent can interact with the environment through PCH’s Layer 3 [3, 4, 33], enabling
counterfactual reasoning in their decision-making, and entering the realm of L3 distribution. For
example, in scenario M2 of Ex. 1.1, following natural instinct led to a suboptimal outcome. However,
if both agents had done the exact opposite of their instinctive choices, they could have achieved a
payoff of (0, 0). Now, we formally define L3 actions.
Definition 2.7 (L3-action space A3). Given a CMAS ↘N,M,X,Y≃, an L3 action for agent i is
defined as a mapping h : D(Xi) ⇔ D(Xi) from intuition to action. ↭

When an agent takes an L3 action, they first note their natural instinct X→
i → fXi(Ui) and then

executes Xi → hi(X→
i), where Ui is the set of unobserved parents of Xi. If h(x) = x, it corresponds

to the L1 action, and if h(x) is constant for all x, it is the L2 action. Bearing this in mind, we will
often denote a0 as X = X→, where X is the action variable and X→ is the intuition.

Bareinboim et al. [3] introduces a novel form of randomization to interact through the Layer 3 of PCH
– interrupt any reasoning agent just before they execute their choice, treat this choice as their intention,
and then act. This procedure involves subtle issues, and we refer readers to Sec. 7 in Bareinboim et al.
[2] for a more detailed discussion. The agent may consider various options during the deliberation
process, but only the final choice matters. For example, an agent may initially choose X

→ = x1,
then reconsider and change it to X

→ = x2 and may continue doing so, until at time step t, it chooses
X

→ = xt and decides to execute it. This final decision defines the agent’s instinct irrespective of the
path taken to reach it (see Fig. 2a). The same reference also proposed Ctf-RCT, where an intended
action is perceived first, but instead of executing it directly, the final action is chosen uniformly at
random from the entire action space. Now, we look at how to compute the payoff under L3 action.
Example 2.8. Consider the CMAS in Ex. 2.2. An L3 action would allow the agent to choose an action
based on their natural intuition. Let g1 and g2 be two functions from {0, 1} to {0, 1}. If the players
are playing g1 and g2, respectively, then the variables are given by X

→
i → Ri ↑ Ui, Xi → gi(X →

i)
for i ↓ {1, 2}. The variables U1, U2, R1, R2 are sampled from P (U), and Y1, Y2 are determined by
Fig. 1a. For example, if g1(x) = 1↔ x and g2(x) = 1↔ x, then the expected payoffs are given by

∑

u1,u2,x1,x2,y

y · P (u1, u2)P (x1, x2 | u1, u2)P (y | u1, u2, g1(x1), g2(x2)) = (0, 0) (5)

The payoffs for the various combinations of actions in Ex. 2.2 are shown in Fig. 3. Once the action
spaces are defined, the policy space can be defined as a distribution over the action space. Let ”(A)
denote the set of distributions over the set of actions A. Then L2 policy space !2 = ”(A2) and L3

policy space !3 = ”(A3). Next, we define the notion of reward.
Definition 2.9 (Reward Function). A reward function Ri : D(Yi) ⇔ R of an agent i is a function
from outcome Yi to real numbers. ↭

In Ex. 1.1, we assume that the reward function is identity, that is, Ri(Yi) = Yi for i ↓ {1, 2}. Now
that we have all the tools, we are ready to define Normal Form Games in proper causal language.
Definition 2.10 (Causal Normal Form Game). A tuple # = ↘M,A,R≃ is a Causal Normal Form
Game (CNFG), where (i)M is a CMAS ↘M,N,X,Y≃, (ii) A = (A1, . . . ,An) is the set of policies
for the n agents, Ai ⇐ {A1

,A2
,A3}, and (iii) R = (R1, . . . ,Rn) is the set of reward functions. ↭
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A CNFG is thus a CMAS, along with the policy space of the n agents and their reward functions.
Now we will formally state the result generalizing our observation from CPD (Ex. 1.1).
Theorem 2.11. Given a game in normal form, there exist two CNFGs C1 and C2 with equilibrium
payoffs µ1 and µ2 under the action space A1 ↖A2, and a Nash Equilibrium (NE) payoff µNE, such
that µ2 < µNE < µ1 where < denotes Pareto domination. ↭

The theorem implies some important observations. CNFGs strictly generalize Normal Form Games
(NFGs), capturing aspects such as instinctive behaviors and counterfactual policies that NFGs cannot
naturally express. Although one might argue that CNFGs can be flattened into an equivalent NFG
(Fig. 3), similar to Extensive Form or Bayesian Games, we claim causal modeling is not only
advantageous but necessary: (i) Constructing the full payoff matrix requires an SCM, since actions
are not arbitrary and defined only within that causal structure; (ii) NFGs do not clarify how actions
are executed or whether agents are even capable of executing them; SCMs provide a concrete notion
of agency; (iii) our solution concept presented in Sec. 3 relies on the hierarchical structure of the
action spaces; (iv) finally, NFGs cannot capture the structure between intuitions and executed actions.
In many cases, agents can only observe executed actions, and for computing equilibria, exploiting the
structure becomes a necessity (Alg. 2). More details are provided in Appendix E.

3 Causal Nash Equilibrium

In this section, we introduce counterfactual rationality and establish the Causal Nash Equilibrium
(CNE) for a CNFG. Allowing agents to transition between layers of the PCH leads to a two-step
decision process. First, the agent determines which layers to operate in – instinct-based (L1), classical
rationality (L2), or counterfactual reasoning (L3). Second, the agent must decide which action to
take within the chosen layer. We refer to this two-step process as a causal strategy. An agent is
counterfactually rational if it seeks to maximize its expected payoff using causal strategies, given that
other agents are also counterfactually rational. Next, we analyze how equilibrium outcomes change
when agents move to higher layers of the PCH.
Example 3.1 (Equilibria in CPD). Consider Ex. 1.1 (M2) where we analyze how the payoffs and
equilibria evolve as agents move across the layers of the PCH, from instinct-based L1 policies to
counterfactual-based, L3 policies. Fig. 3 shows the payoff of the prisoners in this larger action space.
If both prisoners follow their natural choices, playing L1, their payoffs are (↔2.4,↔2.4).

Now, suppose prisoner 1 starts thinking rationally, ignoring their natural instincts, which results in
transition (a) in Fig. 3. Prisoner 1 eventually defects, meaning they play the action do(X1 = 1), while
prisoner 2 still follows their instinct, X →

2 = X2. As a result, the payoffs become (0,↔8.9), where
prisoner 1 benefits while prisoner 2 suffers. Eventually, prisoner 2 also learns to think rationally,
leading to transition (b). In this case, both prisoners enter the realm of Standard Game Theory (SGT),
each choosing to defect, playing the actions (do(X1 = 1), do(X2 = 1)). This results in NE with
payoffs of (↔1.9,↔1.9). A few observations are worth making at this point. First, the scope of SGT
is highlighted in the four central cells of Fig. 3. Second, as noted earlier, the equilibrium in SGT is
worse than when both agents act irrationally (L1). The SGT analysis stops at this point, but our new
framework suggests that strategic thinking may continue.

Over time, prisoner 2 introspects and contemplates counterfactual decisions, as highlighted in
transition (c). They realize that their natural instincts provide insights that can be leveraged, and
they should choose to act opposite to their natural choices, X1 = 1 ↔X

→
1. This yields payoffs of

(↔2.4, 0), improving their baseline and hurting prisoner 1. Eventually, prisoner 1 also reaches L3,
leading to transition (d). Both players, now operating under Causal Game Theory (CGT), settle on
actions against their natural instincts, X1 = 1↔X

→
1, X2 = 1↔X

→
2, achieving payoffs of (0, 0). This

is the final state, where no unilateral deviation can increase payoffs. ↭

The game in this example reflects an increasingly refined form of human rationality, tracing its
evolution from primitive instincts based on raw intuition (L1) to a notion of rationality based on game
theory, where the intuition is ignored (L2), and going to advanced strategic thinking leveraging both
rational and irrational aspects of human cognition (L3).

A natural question that arises from this discussion is if it is always better to consider the full payoff
table, since it provides the largest action space. To answer this, consider the example shown in Fig. 2b.
The full game specification is given in Appendix D. If Player 1’s action space is limited to L1 and L2,
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P1
P2 A1 A2 A1 ↖A2

A1 ↔2, 2 ↔2,↔2 ↔2, 2

A2 0, 0 ↔1.5,↔1.5 0, 0

A1 ↖A2 0, 0 ↔1.5,↔1.5 0, 0

A3 2,↔2 ↔1,↔1 ↔1,↔1

(a)

P1
P2 A1 A2 A1 ↖A2 A3

A1 ↔2.4,↔2.4 ↔8.9, 0 ↔8.9, 0 ↔8.9, 0

A2 0,↔8.9 ↔1.9,↔1.9 ↔1.9,↔1.9 ↔2.4, 0

A1 ↖A2 0,↔8.9 ↔1.9,↔1.9 ↔1.9,↔1.9 ↔2.4, 0

A3 0,↔8.9 0,↔2.4 0,↔2.4 0, 0

(b)

Figure 4: Layer selection game for (a) example in Fig. 2b, and (b) Causal Prisoner’s Dilemma.

then the equilibrium payoff is (0, 0) (marked in blue). However, if the action space L3 is considered,
the last row in the table is also considered (gray), and the equilibrium payoff decreases to (↔1,↔1).
Hence, regardless of what the other player does, Player 1’s mere consideration of a larger action
space harms them. Broadly, deciding which action space to follow is non-trivial. Next, we define a
projection of a CNFG, where action spaces are restricted to specific layers of the PCH.
Definition 3.2 (PCH Projection). Given a CNFG # = ↘M,A,R≃, the PCH projection of #, denoted
by #(A1, . . . , An), is the subgame of # where the action space of agent i is constrained to a subset
Ai ↙ Ai ↓ {A1

i ,A2
i ,A1

i ↖A2
i ,A3

i }. ↭

This projection captures how a game evolves when agents operate within a restricted subset of
available strategies corresponding to different levels of reasoning within the PCH. The problem now,
is to find a projection from where agents have no incentive to unilaterally deviate to a different layer
of the PCH. To address this, we introduce a strategic layer selection game, a meta-game, where agents
choose which layer of PCH to operate at.
Definition 3.3 (Layer Selection Game). Given a CNFG # = ↘M,A,R≃, its Layer Selection Game
L! is the NFG with (i) the same set of agents N , (ii) action space A = A1 ↗ . . . , An, where Ai ↙
Ai ↓ {A1

i ,A2
i ,A1

i ↖A2
i ,A3

i } and (iii) utility u(A) = NE(#(A1, . . . , An)) where NE(#(A1, . . . An))
is a Nash Equilibrium payoff of the CNFG # when actions spaces are restricted to A1, . . . , An. ↭

This metagame represents a higher-level decision process, where each cell in the payoff matrix
corresponds to a PCH projection of #, and its equilibrium will determine the layer of reasoning in
which the agents should operate. We will assume that such counterfactual rationality is common
knowledge, that both players are aware that the other player can forget a part of their actions space
and choose the PCH layers in which they operate. Let s↑i be the NE strategy for player i in the
layer selection game. Let supp(s↑i ) denote the support of s↑i – the set of action spaces with non-zero
probability in s

↑
i . In particular, if Aj

i ⇑↓ supp(s↑i ), then the agent can ignore, or “forget” about this
action space, and instead play a PCH projection of # that excludes Aj

i . For instance, in Fig. 2b, if
Player 1 is able to forget that it can play L3, the payoff for the agent is (0, 0), which is higher than
the payoff that with playing L3, (↔1,↔1).

In practice, agents can limit their reasoning layers by restricting their capabilities: (i) at L1, agents
act instinctively without requiring sampling mechanisms, (ii) at L2, agents may need access to
randomization (e.g., coin flips) for mixed strategies, and (iii) At L3, agents must introspect, observe
their intuition, and then decide how to act based on it, through more sophisticated procedures, such
as ctf-randomization. Refusing to observe intuition renders L3 inaccessible. One key observation is
that forgetting part of the action space may not always be a good idea. For example, consider the
simple prisoner’s dilemma. If the agents choose to forget defect D and just play with the action space
cooperate {C}, they will get a payoff (↔1,↔1). However, one agent may start using the action space
{C,D} and then choose to defect, obtaining a payoff of ↔0.5 while the other agent gets ↔7.0. Thus
it is not in the agent’s interest to forget about defecting (see Appendix D).
Definition 3.4 (Causal Nash Equilibrium, or CNE). Let # be a CNFG and L! be its corresponding
layer selection game with NE strategy s

↑. A strategy profile ω
↑ is called CNE if ω↑ is the Nash

Equilibrium of #(A↑), where A
↑ = A1 ↗ . . .↗An, and Ai = ↖A↓supp(s→i )A. ↭

Theorem 3.5 (Existence of CNE). For any CNFG, CNE always exists. ↭

If playing L2 is a pure strategy NE of the layer selection game L!, then the CNE of # in CGT and
the NE of the normal form game induced by # coincide. Note that it is possible for a CNFG to have
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Algorithm 1 Find-CNE

1: Input: PCH projections of CNFG # = ↘M,A,R≃ Output: CNE strategies ω↑

2: Construct the Layer Selection Game, L!: For all A = A1 ↗ . . . ↗ An, such that Ai ↙ Ai ↓
{A1

,A3
,A1 ↖A2

,A3}, u(A) ↓ NE(#(A1, . . . , An))
3: Let s↑ be the NE strategy of L! and A

↑ = A
↑
1 ↗ . . . A

↑
n, where A

↑
i =

⋃
A↓supp(s→i )

A
4: Return: NE strategies of #(A↑)

Algorithm 2 Ctf-Nash-Learning

1: Input: Dataset from Ctf-RCT: (x→
1, x1, x2,y)

2: Output: Causal Nash Equilibrium strategy f
↑

3: For each (x→
1, x1, x2), estimate the mean and weights of the distributions’ mixture from the

samples (y1, y2). Let the distribution means be R1(x→
1, x1, x2), . . . , Rk(x→

1, x1, x2) with corre-
sponding weights p1(x→

1, x1, x2), . . . , pk(x→
1, x1, x2) (in descending order)

4: If k distributions cannot be identified, assume they are from a single distribution set Ri(x→
1, x1, x2)

as the mean of the distribution and pi(x→
1, x1, x2) = pi(x→

1, x̄1, x̄2) where x1, x2 ⇑= x̄1, x̄2. In
case this assignment fails, set pi = 1/k for all k.

5: Define the action space for each player: F1 = {f : X →
1 ⇔ X1}, F2 = {g : [k] ⇔ X2}

6: Construct a payoff matrix where each cell corresponds to a pair of functions (f, g) ↓ F1 ↗ F2.
For each pair (f, g), compute the payoff

∑
X↑

1,i
P (X →

1)pi(x
→
1, f(x

→
1), g(i))Ri(x→

1, f(x
→
1), g(i))

7: (f↑
, g

↑) → Find-CNE on constructed payoff matrix without the action spaces A1
2,A1

2 ↖A2
2

8: Return: Strategy f
↑.

multiple layer selection games and CNEs. Next, we look at how causal strategies compare with other
strategies. NE(#(A);L!) is the NE payoff with action space A as chosen in L!.
Theorem 3.6 (Dominance of causal strategies). Let # be a CNFG with CNE payoff µ↑ and L!

be its layer selection game with NE strategy s
↑. If s↑ is a pure strategy NE and A

↑
i = supp(s↑i ),

µ
↑ ∝ NE(#(Ai, A

↑
↔i);L!) for all Ai ↓ {A1

i , A
2
i , A

1
i ↖A

2
i , A

3
i } and i ↓ [n]. ↭

In other words, Thm. 3.6 guarantees that if the layer selection game L! admits a pure strategy NE, no
agent benefits by unilaterally switching to a different PCH reasoning layer. Consider Fig. 4a, which
shows the layer selection game for the game in Fig. 2b. – if Player 1 follows L2 policies and Player 2
follows L1 and L2 policies, neither has an incentive to switch to a different layer of PCH. This leads
to an interesting insight – CNE payoff of # is thus (0, 0), while the NE payoff of # with L3 actions is
(↔1.5,↔1.5) and that with interventions is (0, 0). In contrast, Fig. 4b, corresponding to the CPD in
Ex.3.1, has a pure strategy NE at (A3

,A3), indicating both players should adopt L3 policies. This is
consistent with Fig.3 resulting in a payoff (0, 0) while NE payoff with interventions is (↔1.9,↔1.9).

4 Learning Causal Nash Equilibrium

In this section, we introduce two algorithms for computing the CNE in CNFGs. First, we present
Find-CNE (Alg. 1), which applies when the payoff matrix is common knowledge, as in SGT. Then,
we propose Ctf-Nash-Learning, which learns the payoff matrix under partial observability.

We begin with the setting where the action spaces and corresponding payoffs of the CNFG # are
known to both agents (as in SGT). For example, if Player 1 has access to L3 and Player 2 to L2,
both are aware of the payoffs for all combinations of actions within those spaces. We introduce
Find-CNE (Alg. 1), which implements the ideas presented in Sec. 3. The algorithm first constructs
the layer selection game L! corresponding to # (step 2). and then computes its NE strategy (step 3).
Any action space that occurs with nonzero probability in the NE strategy is used for CNE, or else
discarded. Step 4 computes the NE of the projection of # with the restricted action space.

However, such game dynamics may not be common knowledge. If the agents are learning the payoff
matrix through exploration, they may be able to observe only the other agents’ executed actions,
but not their intuitions. To this end, we propose Ctf-Nash-Learning (Alg. 2), an algorithm that
learns the payoff matrix in two-player CNFGs, where both agents have access to L3 policy space. We
assume that during exploration or learning phase, both players are playing Ctf-RCT [2] and collect
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(a) (b)

Figure 5: (a) Change in payoffs of the players in Causal Prisoner’s Dilemma move up the layers of
PCH. Transitions (a), (b), (c) and (d) corresponds to the ones indicated in Fig. 3 (b) Equilibrium
Player 1 Payoffs with L1, L2 and L3 action spaces under two conditions.

the dataset (x→
1, x1, x2,y) (for player 1), where x

→
1 is the intuition of player 1, x1 and x2 are the

actions executed by players 1 and 2, respectively, and y is the reward tuple. The agents do not know
the solution to the layer selection game or the optimal layer in which to play.

For a fixed (x→
1, x1, x2), the outcome y is sampled from the mixture

∑
x↑
2
P (x→

2 | x→
1)P (yx1,x2 |

x
→
2, x

→
1). Step 3 recovers the means and weights of the mixture, which correspond (up to permutation)

to P (x→
2 | x→

1) and E[Yx1,x2 | x→
1, x

→
2]. In the CPD example, we identify p1(x→

1, x1, x2) ⇓ 0.6
and p2(x→

1, x1, x2) ⇓ 0.4 for all (x→
1, x1, x2), matching P (U1 = 0) and P (U1 = 1). Examples of

sample means include R1(0, 0, 0) = (↔1.5,↔1.5) and R2(0, 0, 0) = (↔1,↔1), corresponding to
expectations conditioned on X

→
2 = 0 and X

→
2 = 1, respectively. These values can be consistently

identified under certain technical assumptions (Appendix D). Step 4 addresses the degenerate cases
where Y does not vary with intuition. Step 5 defines the agents’ L3 action spaces. In CPD,
for agent i, it is {f(x) = x, f(x) = 0, f(x) = 1, f(x) = 1 ↔ x} corresponding to actions
{Xi = X

→
i, do(Xi = 0), do(Xi = 1), Xi = 1↔X

→
i}. However, the other agents’ intuitions deduced

in this manner may be a permutation of the actual intuitions X →
2. Once we have a proxy for the L3

actions, the payoff matrix can be computed using Step 6 and the CNE strategy using Find-CNE. The
learned probabilities, mean, and payoff matrix for CPD are shown in the Appendix D.
Theorem 4.1. Given a two player CNFG # = ↘M, (A3

1,A3
2),R≃, let s↑ be the NE strategy of the cor-

responding PCH-LSG L! and A2 =
⋃

A↓supp(s→2)
A. If A2 ↓ {A2

2,A3
2}, then Ctf-Nash-Learning

correctly learns the CNE strategy for Player 1. ↭

Experimental evaluation. We empirically investigate how the behavior of the game changes when
the players move across the layers of PCH. In order to simulate two agents learning, we enable them
with Independent Q-Learning [41], a multi-agent RL algorithm that does not require knowledge of
the other agents. The dynamics as Player 1 moves up the layers of PCH, while Player 2 remains in the
previous layer is shown in Fig. 5a. This is an experimental realization of the discussions presented in
Ex. 3.1 and Fig. 3. Every 20,000 timesteps, one of the agents moves up the layers of PCH, which
triggers a change in payoff.

Next, we also investigate how the equilibrium payoffs change with the value of P (R1 = 0) and
P (R2 = 0) for the scenario presented in Ex. 1.1. In this setting, we showed two extreme cases when
P (Ri = 0) = 0 and P (Ri = 0) = 1 for i ↓ {1, 2}. In Fig. 5b, we show the equilibrium payoffs
for different values of P (Ri = 0) = r for i ↓ {1, 2}. Note that, for the causal prisoner’s dilemma,
following L3 policy space is better than following only L2 action space.

5 Conclusions

In this work, we examine the tension between rational and irrational decision-making through a
causal lens. We introduce the Causal Prisoner’s Dilemma, where rationality is optimal in one setting
and being instinctive in another, despite both yielding the same game-theoretic solution. This reveals
a limitation of standard methods in evaluating such choices. To address this, we propose a causal
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framework that captures both rational and instinctive or biased behaviors, and show that it strictly
generalizes Normal Form Games (Thm.2.11). We define counterfactual strategies and analyze
equilibrium properties under these strategies (Thm.3.6). Finally, we develop algorithms to compute
the Causal Nash Equilibria: Find-CNE (with known payoffs) and Ctf-Nash-Learning (learning
through interaction). We hope that this framework advances the design of more robust, rational
decision-making systems.
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A Preliminaries and Background

A.1 Structural Causal Models and PCH

Structural Causal Models is a general class of data-generating models [31, 2] that allows three types
of distributions based on three levels of interaction with the system: observational, interventional,
and counterfactual. First, we will give the formal definitions of these concepts and the hierarchical
relation among them, known as Pearl Causal Hierarchy (PCH). Our presentation mostly follows
Bareinboim et al. [4].
Definition A.1 (Structural Causal Models). A structural causal model M is a 4-tuple
↘U,V,F , P (U)≃, where

• U is a set of background variables, also called exogenous variables, that are determined by
factors outside the model;

• V is a set {V1, V2, . . . , Vn} of variables, called endogenous, that are determined by other
variables in the model — that is, variables in U ↖V.

• F is the set of functions {f1, f2, . . . , fn} such that each fi is a mapping from (the respective
domains of) Ui ↖ Pai to Vi, where Ui ⇒ U, Pai ⇐ V \ Vi, and the entire set F forms a
mapping from U to V, that is for each i = 1, 2, . . . , n, we have vi → fi(pai, ui);

• P (U) is the distribution over U.

One way to visualize the dependence among the variables in the SCM is through a causal diagram,
formal construction of which is given below (Def. 13, [4] ).
Definition A.2 (Causal Diagram (Semi-Markovian Models)). Given an SCM M =
↘U,V,F , P (U)≃, a causal diagram G of M is constructed as follows:

1. add a vertex for every endogenous variable in the set V

2. add an edge (Vi ⇔ Vj), for every Vi, Vj ↓ V and Vi occurs as an argument in fj ↓ F .

3. add a bidirected edge (Vi → . . . ⇔ Vj) for every Vi, Vj ↓ V if the corresponding
Ui, Uj ↓ U are correlated or the corresponding functions fi, fj share some U ↓ U as an
argument.

Next, we define three types of distributions corresponding to distinct modes of interaction with an
SCM: the L1 (observational), L2 (interventional), and L3 (counterfactual) distributions (Defs. 2, 5,
and 7 in [4]).
Definition A.3 (L1 valuation). An SCM M = ↘U,V,F , P (U)≃ defines a joint probability distribu-
tion P

M(V) such that for each Y ⇐ V:

P
M(y) =

∑

u|Y(u)=y

P (u) (6)

Before we define L2 evaluations, we need to understand interventional SCMs. Let M be an SCM and
x be an assignment to X ⇐ V. Then the interventional SCM Mx is the 4-tuple ↘U,V,Fx, P (U)≃,
where Fx = {fi : Vi ⇑↓ X} ↖ {X → x}. This operation is also known as the do(x) operation.
Definition A.4 (L2 valuation). An SCM M = ↘U,V,F , P (U)≃ induces a family a joint probability
distributions over V, one for each intervention x. For each Y ⇐ X,

P
M(yx) =

∑

u|Yx(u)=y

P (u) (7)

where Yx(u) = YMx(u)

Such an operation, where the values of random variables X are set to constant values x, is known
as hard interventions. Conditional or stochastic interventions can be defined similarly [9]. Let
εX = {εX}X↓X be the set of soft-interventions on the variables X ↓ X. Given εX, the new
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Algorithm 3 Ctf-RCT: Counterfactual Randomized Controlled Trials in MAB

1: Input: domain of actions D(X), total number of trials N ↓ N
2: for t = 1, 2, . . . do
3: Perceive intended action X

(t) and store it.
4: if t ′ N then
5: Sample realized action

X
→(t) ∞ Unif

(
D(X)

)
.

6: else
7: Set

X
→(t) = argmax

x
Ê(N)

[
YX↗x | X = X

(t)
]
.

8: end if
9: Perform do

(
X

→(t)) and receive reward Y
(t).

10: end for

Figure 6: Illustration of decision flow fX

model MωX is defined as ↘V,U ↖ U→
X,F →

, P (U ↖ U→
X)≃, where U→

X = {U→
X}X↓X and F → =

{F \ {fX}X↓X} ↖ {f →
X}X↓X. The distribution P (V;εX) can then be computed as P (V) in MωX .

Next, we move on to the L3 distributions, where we ask questions of the form “Given that the patient
died without the treatment, would they be alive if they were given the treatment?”. The first thing to
note here, is that this query is not the same as treatment effect, that is E[Yx=1] ↔ E[Yx=0], where
we are taking the difference between the average effects of giving the treatment and not giving
the treatment. On the other hand, in the counterfactual question, we are asking the question if it
would have helped for the same individual. Now, the difficulty of this problem, lies in the fact, that
the patient was already denied treatment and died, and it is not practical to go back in time and
give them the treatment. Mathematically, if Y is the variable that denotes whether is the patient
is alive and X be the variable that the patient was given the treatment, we can write the above
question as P (Yx=1 = 1 | X = 0, Y = 0). Now, we provide a formal definition on how to compute
counterfactual queries, given an SCM.
Definition A.5 (L3 valuation). An SCM M = ↘U,V,F , P (U)≃ induces a family of joint distribu-
tions over counterfactual events yx, . . . zw for Y,Z, . . . ,W,X ↓ V:

P
M(yx, . . . zw) =

∑

u|Yx(u)=y,...Zw(u)=z

P (u) (8)

The collection of observational (L1), interventional (L2) and counterfactual (L3) are together called
the PCH.

A.2 Counterfactual Randomization

In practice, interacting through L3 or counterfactual layer of the Pearl Causal Hierarchy can be
extremely nontrivial. To this end, [3] introduces a novel form of randomization to interact through
the Layer 3 of PCH. The challenge stems from the observation that agents may consider various
alternatives during the deliberation process and change their opinion about the best course of action.
For example, if the agent initially considers X = x, and then reconsiders and changes to X = x

→, is
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this counterfactual action where the natural intuition was x and the performed action would be x
→?

What if the agent reconsiders their decision again and changes it to x; is the agent acting against their
intuition? What is the intuition x or x→. Counterfactual randomization [3, 2] addresses this concern.

The main idea is that the agent may consider many options during the deliberation process, but only
the final choice matters. Consider the deliberation process shown in Fig. 6: at time step T = 1, the
agent intends to play X = x1 but reconsiders, thinking it might be sub-optimal, and decides to switch
to X = x2 instead, where x1 ⇑= x2. As time passes, the agent may realize that X = xt↔1 was not
ideal and switch to an alternative, X = t. Ultimately, the final decision defines the intuition of the
agent, regardless of the path taken to reach it. In practice, the agent could also in this reasoning
process forever without ever reaching a decision.

This challenge calls for novel counterfactual machinery to allow for the counterfactual interaction
following layer 3. Bareinboim et al. [3] introduces counterfactual randomization in which an agent
is interrupted just before the execution of the choice, the choice being taken as the natural intuition
and the final action executed based on this intuition and flip of a coin. Further, Bareinboim et al.
[2] also introduces ctf-RCT, where an intuition is observed and then an action is chosen at random
for execution. This allows us to sample from counterfactual distributions of the form P (Yx | x→)
E[Yx | x→], where Y is the outcome, x is the intervened value and x

→ is the intuition, measured just
before the decision. The algorithm is shown in Alg. 3. For more details on this procedure in the
single-agent setting, please refere to Bareinboim et al. [2, Sec. 7]

A.3 Normal Form Games and Nash Equilibrium

In many settings – from economics and political science to computer science and biology – multiple
decision-makers interact strategically, each trying to achieve the best possible outcome for themselves.
A normal-form game provides a compact way to model such one-shot interactions, and the concept of
Nash equilibrium captures the idea of a stable outcome where no individual can benefit by unilaterally
changing their choice. In this section of the appendix, we walk through these ideas step by step,
illustrating them with the classical Prisoner’s Dilemma and with the intent of contrasting this later on
with other variations and approaches.

A.3.1 What is a Normal-Form Game?

Intuitively, a normal-form game asks:

“If each player picks an action simultaneously, how do their combined choices
determine everyone’s payoffs?”

This question leads to the following definition of a game:
Definition A.6 (Normal-Form Game). A finite n-player normal-form game is a tuple:

G =
〈
N, A, u

〉

where

• N = {1, 2, . . . , n} is the set of players.

• A = A1 ↗ A2 ↗ · · · ↗ An, with each Ai a finite set of actions available to player i. An
element a = (a1, a2, . . . , an) is called an action profile.

• u = (u1, u2, . . . , un) is a collection of payoff functions, one per player:

ui : A ↔⇔ R, a ∈⇔ ui(a).

Given a profile a, ui(a) tells us how much player i “earns” (or how happy they are) under
that combination of actions.

To summarize, in Normal Form Games:

• Each player i simultaneously chooses an action ai ↓ Ai.
• Once all choices a = (a1, . . . , an) are made, each player i receives payoff ui(a).
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Despite their simplicity, Normal-Form Games are extremely powerful in their expressive power and
many other richer representations, such as Extensive Form and Bayesian Games, can be reduced to
a Normal Form equivalent. Next, we look at how agents can and should behave in a normal form
games.

A.3.2 Mixed Strategies and Best Responses

Rather than committing to a single action, players may randomize over their options. A mixed strategy
for player i is simply a probability distribution over Ai. Denote by

Si = ”(Ai)

the set of all such distributions, and by S = S1 ↗ · · · ↗ Sn the collection of all players’ mixed
strategies.

Given that the other players use some mixed-strategy profile s↔i ↓ S↔i, player i will choose a
distribution si ↓ Si to maximize their expected payoff

ui(si, s↔i) =
∑

a↓A

[
si(ai)↗ s↔i(a↔i)

]
ui(a).

Definition A.7 (Best Response). A mixed strategy s
↑
i ↓ Si is a best response to opponents’ strategy

profile s↔i if
ui

(
s
↑
i , s↔i

)
∝ ui

(
si, s↔i

)
for every si ↓ Si.

In other words, s↑i gives player i the highest possible expected payoff, assuming the others stick to
strategy s↔i.

The notion of best response will play a key role in understanding agent’s behavior.

A.3.3 Nash Equilibrium

A Nash equilibrium is a collection of strategies – one per player – such that each player’s choice is a
best response to everyone else’s. No one can gain by deviating alone. Such a notion gives a concept
of stability in a game, or a type of a solution.
Definition A.8 (Nash Equilibrium). A mixed-strategy profile s↑ = (s↑1, . . . , s

↑
n) is a Nash equilibrium

if, for every player i,
ui

(
s
↑
i , s

↑
↔i

)
∝ ui

(
si, s

↑
↔i

)
for all si ↓ Si.

A.3.4 Example: The Prisoner’s Dilemma

To see these definitions in action, consider the Prisoner’s Dilemma, a two-player game where each
must choose either to cooperate (C) or defect (D). The actions of the player i can be written as:

Ai = {C,D}.
Their payoffs are given by the following matrix (first entry is player 1’s payoff, second is player 2’s):

P1

P2
C D

C ↔1, ↔1 ↔7, ↔0.5

D ↔0.5, ↔7 ↔1.9, ↔1.9

Let’s walk through each prisoner’s incentives:

• If player 2 cooperates (C), then player 1’s payoff is
u1(C,C) = ↔1 vs. u1(D,C) = ↔0.5.

player 1 is better off defecting (D), since u1(D,C) > u1(C,C).
• If player 2 defects (D), then player 1’s payoff is

u1(C,D) = ↔7 vs. u1(D,D) = ↔1.9.

Again, player 1 prefers to defect (D), since u1(D,D) > u1(C,D).
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X1 X2

Y1 Y2

(a) Causal graph for Markovian Prisoner’s Dilemma

Convict 1
Convict 2

X2 = 0 X2 = 1

X1 = 0 ↔1,↔1 ↔7,↔0.5

X1 = 1 ↔0.5,↔7 ↔1.9,↔1.9

(b) Payoff matrix for Prisoner’s Dilemma

Figure 7: Representation of the Markovian Prisoner’s Dilemma: (a) causal graph and (b) correspond-
ing payoff matrix.

• Hence, it is better for player 1 to defect D, irrespective of what player 2 does. By symmetry,
player 2 likewise always prefers D whatever player 1 does.

Thus, each player’s unique best response to the other is to defect. When both play their best responses,
we reach the profile, (D,D) which is the game’s Nash equilibrium. Ironically, although (C,C)
would yield (↔1,↔1) total payoff (mutual cooperation), rational self-interest drives both to (D,D),
giving only ↔1.9↔ 1.9 = 3.8.

A.4 Paradox of Rationality

It has been observed throughout economics and behavioral game theory literature that irrationality
can result in better outcomes than rational choices. One such example is the prisoner’s dilemma.
Both cooperating would be an irrational choice, but it results in a better payoff compared to fully
rational players both of whom would choose to confess. Such irrational co-operations have also
been observed in practice [7]. There has been several attempts in order to explain such irrationalities
observed in human decision-making either through different models of bounded rationality, such as
payoff transformations [43, 22, 23] or through alternate forms of reasoning [7].

Consider the example of the Travelers’ Dilemma [5], where 2 travelers are asked to write the price of
their lost item between $2-100. One with the lower value receives the lower value + $2 and one with
the higher value receives lower value - $2. If an agent just tries to maximize their own reward and do
not reason over others, both of them will write $100 and receive that. Now, if they do one step of
reasoning, they will think “If I write $99 and my opponent writes $100 then, I will get $101 and my
opponent $97”. Hence, both will write $99 and get $99. The amount will decrease with more levels
of reasoning. Irrational players again get higher payoffs than rational agents.

Basu [5] states that different thought processes lay behind different types of choices that people
made playing a version of Traveler’s Dilemma with the options ranging from 180 to 300 (pie chart):
a spontaneous emotional response (choosing 300), a strategically reasoned choice (295–299) or a
random one (181–294). Players making the formal rational choice (180) might have deduced it or
known about it in advance. As expected, people making “spontaneous” or “random” selections took
the least time to choose (as seen in experiments).

A.4.1 Causal Game Theory and Paradox of Rationality

Our proposed framework can both model and explain this gap between theory and practice. First, we
consider the modeling part through the example of Prisoner’s Dilemma, which we will also call the
Markovian Prisoners Dilemma. The causal graph for the Markovian PD is shown in Fig. 7a. Let X1

and X2 be the action variables and their values 0 and 1 correspond to cooperating (C) and defect (D)
respectively, and let their natural probability of cooperating be P (Xi = 0) = 0.9 for i ↓ {1, 2}. If
someone is simply collecting observational data, it may happen that the agents are simply playing L1

and hence the corresponding payoff is higher. Thus our modeling of games can model the irrational
tendencies of the agents involved.

Next, comes the explaining part. Consider the scenario M1 in Ex. 1.1, and the optimal equilibrium
action, which is both the players playing L1. Note that, this is infact the best choice from the
perspective of a player, who knows how to act in L1, L2 or L3. However, from an external observers
point of view, these players are playing suboptimally, that is, playing C with probability 0.6 and D

otherwise. From an external’s observers’ point of view, if the agents performed RCT, they would have
a payoff as shown in Fig. 1b (bottom table), according to which playing D is the optimal strategy
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with a payoff (↔1.9,↔1.9). However, the agents, playing seemingly irrationally somehow get a
payoff of (0, 0), creating a paradox in the mind of the external experiment designer.

A.5 L1, L2 and L3 actions in single-agent systems: The greedy Casino

The following examples illustrates the limitations of traditional decision-making and how an agent
can interact with the system through the three layers of PCH as first introduced by Bareinboim
et al. [3]. Consider a casino introducing two new slot machines, denoted 0 and 1. Gamblers choose
machines according to two unobserved binary factors: their level of inebriation (D ↓ {0, 1}) and
whether a machine is blinking (B ↓ {0, 1}). Although these factors are hidden from the agent, they
influence natural behavior through the rule X = D ↑B, determining the arm X ↓ {0, 1} a gambler
is predisposed to choose.

The casino exploits this behavioral pattern by designing reactive slot machines that adjust payouts
based on these hidden variables. While ensuring that payout rates meet a government-mandated
minimum of 30% when players are assigned arms randomly (e.g., RCT during inspection), the
machines covertly reduce payout rates for players who follow their natural inclinations. The effective
payouts are given in Table 1.

D = 0 D = 1

B = 0 B = 1 B = 0 B = 1

X = 0 0.10 0.50 0.40 0.20
X = 1 0.50 0.10 0.20 0.40

Table 1: Reactive slot machine payouts: bolded entries indicate natural arm choices under the rule
X = D ↑B.

Note, that while players are following their natural choice, the payoff is given by

E[Y ] =
∑

b,d

y · P (y | X = d↑ b, b, d) = 0.1 (9)

On the other hand, if the inspectors do an RCT, the payoff is given by

E[Y | do(X = x)] =
∑

b,d

y · P (y | X = x, b, d) = 0.3 (10)

for any x ↓ {0, 1}.

However, if the agents are following opposite of their natural intuition, then the payoff will be given
by

E[YX=0 | X = 1]P (X = 1) + E[YX=1 | X = 0]P (X = 0) = 0.45 (11)
which is significantly higher than the other strategies. In fact, we can now make the following
observation:

E[Yx | x→] > E[Yx↑ | x→] = E[Y | x→] (12)
for any x ⇑= x

→. The first term corresponds to the scenario when the gambler wants to play x
→, but

then just before execution they choose x. The payoff of such a strategy is higher than the payoff of
just playing their intuition. The term where they simply choose a single machine and play (as in
RCT), E[Y →

x] lies between these two strategies. In general L3 strategies will always outperform L1

and L2 strategies, since both can be expressed as L3 strategies.

In fact for single agent systems, it is always better for the agents to follow L3 policy space, as L3

space subsumes L1 and L2 policies.

max
ε

∑

x

E[YX=ε(x) | x]P (x) ∝ max{max
a

E[YX=a], E[Y ]} (13)

For more details, please refer Bareinboim et al. [3, 2].
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A.6 Graphical Models and Game Theory

Several works have studied game theory from a graphical models perspective. The main emphasis has
been on the computational advantages related to learning equilibria through probabilistic reasoning
and corresponding optimization tools [25, 24]. This is a part of the growing and important literature
known as algorithmic game theory Roughgarden [36]. Our approach addresses key gaps in existing
models, particularly concerning the assumption of Markovianity, issues of irrationality, and multi-
agent interactions.

Specifically, Kearns et al. [24] introduced graphical games to leverage graph structures for modeling
interactions among players, making equilibrium computation more efficient when compared to
standard Normal Form Games. Furthermore, Koller and Milch [25] extended influence diagrams [18,
26] to multi-agent settings, where decision nodes represent strategies, and probabilistic dependencies
simplify equilibrium computations. Their framework was called Multi-Agent Influence Diagrams
(MAIDs). The main goal of these works was connecting graphical models and game theory, and where
somewhat silent with respect to how this relate to causality, including interventions and counterfactual
reasoning.

The Structural Causal Influence Model by Everitt et al. [10] connects causality with the influence
diagrams literature [18, 26]. They study certain notions found in this traditional literature, includ-
ing value of information, value of control, among others. Their setting focuses on single-agent
settings, whereas this paper considers multi-agent interactions, including more equilibrium analysis
in scenarios where agents compete in a strategic manner. They also did not consider unobserved
confounding, which is one of the key challenges in typical causal settings. Another form of causal
games is proposed by Gonzalez-Soto et al. [12], which again focuses on actions as interventions and
ignores the other layers of operations by a player.

Hammond et al. [14] extends Koller & Milch’s MAIDs by introducing the concept of MAID subgames
and proposing equilibrium refinements such as subgame perfect and trembling hand perfect equilibria.
The authors establish equivalence results between MAIDs and Extensive Form Games (EFGs),
highlighting the computational advantages of MAIDs in representing and solving certain classes
of games. Still, despite its power, this work does not explore causal implications or counterfactual
strategies, which are central to our framework. Our model explicitly integrates these aspects for
deeper insights into strategic decision-making and the meaning of rationality.

Unlike the Structural Causal Games framework in Hammond et al. [15], which assumes Markovian
dynamics, our model handles non-Markovian influences, including unobserved confounding that
impact both actions and payoffs. We note that the assumptions required to ascertain Markovianity are
inapplicable in our setting, since one of our main goals is to account for irrational behavior – where
the agent acts without knowing why. In a Markovian setting, the agent knows the reasons for acting
in a particular way. In fact, we model irrationality through the notion of counterfactuals and extend
equilibrium concepts beyond purely rational agents, as prescribed by Nash’s framework. A detailed
comparison with this work is provided in the next section.

The approach proposed by Chan et al. [6] embeds irrationality in the Bellman equation under a
Markovian assumption in a novel way. Our model, however, allows for general irrationality without
specifying any functional constraints, which is necessary in a non-Markovian setting. The assumptions
required to ascertain Markovianity are inapplicable in our setting, since one of our main goals is to
account for irrational behavior – where the agent acts without knowing their reasons. Furthermore,
while their focus is on a single-agent environment, ours is on multi-agent, strategic settings.

By bridging these gaps, our model provides a unified view of rational and irrational behaviors through
a causal lens and rooted in first principles. It also extends graphical game-theoretic models to multi-
agent systems, contributing to a more comprehensive understanding of equilibrium dynamics and
rationality. Notably, while our work falls within the realm of causality, it is not primarily focused
on its graphical aspects, as evident throughout the main body of the paper. As mentioned earlier,
the central issue addressed here concerns the most fundamental decision-making setting and how
counterfactual reasoning (and counterfactual randomization Bareinboim et al. [3]) can be leveraged
to model and reconcile both irrational and rational behaviors, ultimately resolving the rationality
paradox. We believe that the foundational understanding developed in this pervasive setting can be
generalized to more complex games, where a graphical model and a more fine-grained structure could
play a role, including for computational purposes.
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A.7 Notes on Hammond et al. [15]

We note that Hammond et al. [15] also claim to unify causal modeling and game theory through
the formalism of causal games and structural causal games (SCGs). In this section, we provide a
critical examination of this claim and demonstrate that their approach fails to capture several essential
aspects of causal modeling that are fundamental to understanding how agents reason and act in
complex systems. Specifically, we identify four key limitations in their formalism: (1) the absence
of the causal hierarchy and associated distributions, (2) the neglect of unobserved confounding, (3)
the inability to represent L1 actions even when extended with default functions, and (4) a flawed
approach to counterfactual evaluation that misinterprets key semantic and identification issues. Each
of these points is discussed in detail below.

1. Absence of the Causal Hierarchy and their distributions: One of the most basic features
of causal modeling is the presence of different probability distributions induced by the collection
of causal mechanisms, which is organized as three qualitatively different probability distributions
– observational, interventional, and counterfactual [32, 4], and which are also known as the Pearl
Causal Hierarchy (PCH). These three levels of distributions separate causal models from previously
used graphical models such as Bayesian networks, and are considered a novel landmark in evaluation,
estimation, representation, and decision-making in complex environments. As a consequence, an
agent can interact with the system in three different ways corresponding to the three layers of
PCH policies: L1, L2, and L3. However, Hammond et al. [15] collapse this fundamental hierarchy
into a single layer by treating all agent actions as (hard and soft) interventions, disregarding the
observational (L1) and counterfactual (L3) levels of reasoning completely. Recall the key definition
of games introduced in this work [15, Def. 22]:
Definition A.9 (SCG). A (Markovian) SCG M = (G, ϑ) is a causal game over the exogenous and
endogenous variables E↖V such that any deterministic parameterization of the decision variables of
CPD ω, the induced model with join distribution P

ε(V,E) is an SCM.

The authors explain that:

“An SCG can be seen as an SCM without parameters for the decision variables.
Given a policy ω, we recover an SCM, as we explain in more detail below.”

As a result, an SCG itself does not define a natural distribution (L1), because the decision variables,
say X do not have a natural mechanism fX and are only determined by the agents or the policy.
This precludes the possibility of modeling agents that interact in a L1 or L3 manner, significantly
restricting the expressivity of SCGs in modeling how real-world agents reason. Still, in the formalism
introduced in this paper, there is a natural distribution of the decision variables (Layer 1 in the PCH),
hard/soft interventions (Layer 2), and counterfactual actions (Layer 3). Such fundamental features
could not be captured by the models proposed in [15], which is illustrated in the following example.
Example A.10 (Markovian Prisoner’s Dilemma). Two thieves are suspected of a crime and are
captured. Unfortunately, there is not enough evidence to convict them. They can now cooperate
(X = 0) or defect (X = 1). The payoffs for the actions of the convicts are shown in Fig. 7b, where
the numbers can be interpreted as the years they have to serve in prison. The Nash equilibrium of this
game is when both players defect and the payoffs are (↔2,↔2), where both players have no incentive
to cooperate. The causal diagram for such a scenario is shown in Fig. 7a.

Consider the following scenarios – in the first one, let us call it M1, the prisoners are more loyal
and their spontaneous instinct is to cooperate (X = 0) with a probability of 0.9 (disregarding their
utility), and in the second scenario, called M2, the instinct is to cooperate (X = 0) with a probability
of 0.5 and confess otherwise. Now, if the agents follow their natural instincts, their payoffs in the
first scenario are

µ
1
L1

=
∑

x1,x2

Y · P (X1 = x1)P (X2 = x2)P (Y | x1, x2) = (↔1.46,↔1.46)

and in the second scenario is
µ
1
L1

=
∑

x1,x2

Y · P (X1 = x1)P (X2 = x2)P (Y | x1, x2) = (↔2.5,↔2.5)

If µNE is the NE payoff, we can see that
µ
1
L1

> µNE > µ
2
L1

(14)
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Figure 8: Payoffs of the two players as a function of their lying probability. A and B denote the
payoffs when the agents follow their natural instincts in scenario M1 and M2, respectively.

Figure 9: m-MAID is same for both M1 and M2 in Ex. 1.1

Now, these natural distributions cannot be represented or modeled by an SCG, where the X1 and
X2 are determined by interventions. Hence, agents cannot act in L1 and SCGs cannot capture the
subtlety in Eq. 14. In fact, both M1 and M2 result in the same SCG in Fig. 7a and mechanized
SCG in Fig. 9. In fact M1 and M2 are only two instances of infinitely many more scenarios that can
happen. Fig. 8 shows how the players’ L1 payoffs change with their probability of cooperating. The
scenarios M1 and M2 are marked as A and B in the plots. The green line denotes L1 payoffs equal
to the NE payoff. Also, since there is no concept of natural actions, L3 policies also do not exist in
SCGs. For example, in M2 if both the prisoners decide to act against their natural instinct, then the
payoffs are µ

2
L3

= (↔1.46,↔1.46) and hence µ
2
L3

> µNE.

2. Unobserved Confounders: One of the major challenges in real-world settings that causal
inference is concerned with is the existence of unobserved confounding, variables that cannot be
measured but influence both decisions and outcomes. The classic saying that “causation is not
association” comes precisely because of the existence of such confounders. However, Hammond
et al. [15, Sec. 2.1] does not take unobserved confounders into account.

“In this paper, we make the simplifying assumption that all SCMs are Markovian,
meaning that each variable V has exactly one exogenous parent EV and the
exogenous variables are independent.”

The problem becomes even more fundamental in the context of causal game theory, as highlighted
in the Causal Prisoner Dilemma (Ex. 1.1). In words, both M1 and M2 imply the same SCG and
mechanized-MAID (Fig. 9), but entail entirely different causal analysis and decision-making strategies.
For example, in M1, following the L1 strategies is the equilibrium strategy, and in M2 following
the L3 strategies are the equilibrium strategies, and in both cases the equilibrium is better than the
equilibrium payoffs of L2. However, this observation is not an idiosyncrasy but rather part of a
broader phenomenon, as highlighted by the following proposition.
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Theorem A.11 (CNFG representation of SCG). Given an SCG corresponding to a Normal Form
Game, there exist two CNFGs C1 and C2, with equilibrium payoffs µ1 and µ2 under L1 and L2

actions and Nash Equilibrium payoffs µNE, such that

µ1 < µNE < µ2 (15)

Proof. This result follows from Thm. 2.11. Recall Def. 22 from [15], and Ex. 1.1 of this work.
Hence, if we follow the proposed construction, we see there is a bijection between a normal form
game and its SCG representation, which implies that given a normal form game there is a single SCG
which represents the same game as the normal form game. However, Thm. 2.11 implies the existence
of two CNFGs satisfying Eq. 15. Hence, CNFG represents a larger class of models than SCGs for
normal form games.

Formally, CNFGs is a strictly larger class than normal form games represented as SCG.

3. Why can’t an SCG with default actions represent L1 actions?
One may surmise that a Strategic Causal Game (SCG) could be extended to include a default action
to represent an L1 action. However, this would face two fundamental challenges:

1. Defining the Default Action: In CNFGs, L1 actions are determined by nature (the SCM)
through mechanisms that are entirely unknown to the agent. For instance, in Example 1.1,
suppose we attempt to proxy an L1 action in an SCG by defining a default function such
as X = U ↑R. But why should this specific function be chosen? It could just as well be
U ·R, U ∋R, or any arbitrary combination of U and R. Since the agent has no knowledge
of these variables or the functional form governing them, they cannot meaningfully prefer
one default over another. This renders the notion of a default action indeterminate from the
agent’s perspective.

2. Dependence on Unobserved Variables: A default action that depends on unobserved
variables (like U or R) inherently contradicts the assumption that these variables are un-
observable to the agent. If the agent is able to use these variables as inputs in its decision-
making process, then, by definition, they are no longer unobserved. This undermines the
epistemic foundations on which the model is built. Put differently, this denies the possibility
of unobserved confounding, a common challenge in causal inference.

These issues highlight a deeper point: SCGs and CNFGs represent fundamentally different models
of agent-environment interactions. Attempting to equip SCGs with mechanisms to mimic CNFG
behavior would ultimately collapse the SCG framework into that of CNFG.

4. Counterfactual Evaluation: Next, we look at the evaluation of counterfactual queries and the
rationale behind computing such queries, as proposed in Hammond et al. [15]. In words, they want
to answer “If we have evidence that the equilibrium ω was played in the actual world, how and to
what extent should that inform us of the equilibrium ω

→ played in the counterfactual world where
the values of some mechanism variables may have changed?” They claim to compute the quantity
P

ε↑
(xI | zε) through the following procedure:

• For every actual rational outcome ω ↓ R(M | z), update P (u) to P (u | z) (’abduction’)
• Apply the intervention I , on variables Y, recomputing any rational responses to form ω

→

and adding new exogenous variables as required (’action’)

• Return each marginal distribution
∫
Du

P
ε↑
(x | u→)P (u→)du→ in the modified model for each

counterfactual rational outcome ω
→ (’prediction’)

Note that even though this follows Pearl’s algorithm in theory, it misses a fundamental practical point:
neither u is observed, nor is P (u) known, which makes the above evaluation impossible in most
cases [31]. Formally, this procedure provides clear semantics for counterfactuals [4, Sec. 1.2], but it
does not immediately imply their identification. Methods to overcome this impossibility of directly
evaluating counterfactual quantities are known in the literature (see, e.g., [8, 33]). For example, one
counterfactual quantity that [15] would be interested in, within our context from Example1.1, is

P (YX1=1,X2=0 = y | YX1=0,X2=0 = y
→), (16)
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which is known not to be identifiable from observational or interventional data without further
assumptions. We note that their counterfactual evaluations do not correspond to the counterfactual
actions studied in this paper. In contrast, we compute the quantity

∑

x

P (YX1=x↑,X2=0 | X1 = x)P (X1 = x), (17)

which SCGs cannot represent, since they do not define a natural distribution. Moreover, this quantity
is counterfactually realizable and can be used in practice through counterfactual randomization [33].

B Proofs

B.1 Proof of Theorem 2.11

Consider a normal form game G with the action space A = A1 ↗ . . .↗An and the utility function
u = (u1, . . . , un). Assume all the utilities are finite. Suppose s

↑ is the NE strategy and µNE is the
NE payoff.

Construct an SCM as follows: U = {U1, . . . , Un} and X = {X1, . . . , Xn}, where DXi = DUi =
Ai and Xi = Ui for all i ↓ [n]. For i ↓ [n], P (Ui = a

j
i ) = s

↑
i (a

j
i ) where s↑i (a

j
i ) is the probability of

playing a
j
i by agent i in the NE strategy s

↑
i . For i = 1

Y1(a,u) = u1(a) + 1{U1 = a1} ·M · (|A1|↔ 1)↔ 1{U1 ⇑= a1} ·M (18)

For all other agents Yi(a,u) = ui(a). Note that payoff for interventions is still the same as normal
form games. However, if agent 1 plays L1, the payoff can be significantly different, while for other
players, the payoff remains the same as NE.

For #1, suppose M is a significantly large positive number and for #2, let M be a significantly large
negative number, then we have for agent 1, the L1 payoff is higher in #1 and lower in #2 than the NE
payoff; for all other agents the payoff is the same. Hence, it follows, that

µ2 < µNE < µ1

↭

B.2 Proof of Theorem 3.5

Consider the PCH-LSG L! corresponding to the CNFG #. Now since, L! is a NFG, a mixed strategy
NE exists. Let this strategy be s

↑. Consider the new action space A
↑ = A

↑
1 ↗ . . . ↗ A

↑
n, where

A
↑
i = supp(s↑i ). This is a fixed policy space. The PCH projection of # with A

↑ is a subgame of #
where the action space are restricted to A

↑. Now, this can be represented in Normal Form where the
action space is A↑. Now, NE exists for this space. Hence, CNE exists for all CNFGs. Note that, like
NFGs can have multiple NEs, CNFGs can have multiple CNEs.

B.3 Proof of Theorem 3.6

First note that µ↑ = NE(#(A↑)). Suppose an agent is able to change the action space from A
↑
i to

A
→
i and improve their payoff. However, if that was true, then NE(#(A→

i, A
↑
↔i)) > NE(#(A↑

i , A
↑
↔i)),

which implies in the PCH-LSG L!, agent i would be able to improve the payoff moving from A
↑
i

to A
→
i. However, by our assumption A

↑ is the pure strategy NE of L!, hence no such deviations are
incentivised - a contradiction. Hence µ

↑ ∝ NE(#(A→
i, A

↑
↔i) for all

B.4 Proof of Theorem 4.1

First, we will show that the payoff matrix learned is a permutation of the true payoff matrix, and
then find out why L2 or L3 payoffs will be properly learned. First note that, since the mixture is
identifiable, we recover the DX2 = k distributions, where each of them corresponds to a value of X →

2.
However the deduced values {x̂1

2, . . . , x̂
k
2} are arranged in decreasing order of distribution, that is

p(x̂1
2) > . . . > p(x̂n

2 )
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In reality, the original values of X
→
2 may not be so well arranged and hence {x̂1

2, . . . , x̂
k
2} =

h({x1
2, . . . , x

k
2}) where h is a permutation function.

Now, L3 action space consists of all the functions from natural intuition X
→
2 to X2. Hence the values

of X →
2 are essentially irrelevant and we can learn the whole table upto a permutation of the action of

the second player. Since NE of Player 1 and the NE payoff remains same even with the permutation
of the action space, we have that NE(#(A3

1, A
3
1)) will be properly learned.

Now, L2 action spaces are constant functions and remain invariant to permutations of X →
2. Hence,

in a similar manner NE(#(A2
1,A2

2)) will be correctly learned, as will NE(#(A3
1,A2

2)) and
NE(#(A2

1,A3
2)), and so on. By our assumption, the NE strategy of the PCH-LSG for the

other agent spans over A2
2 and A3

2. Hence, the NE strategy of PCH-LSG lies on the space
{A1

1,A2
1,A1

1 ↖ A2
1,A3

1} ↗ {A2
2,A3

2}. Since, we are able to learn NE corresponding to each of
these policies, we can correctly identify the CNE strategy.

C Discussion of Causal Games & Information sources

While the Causal Prisoner’s Dilemma highlights the difficulty of cooperation – and shows that
counterfactual reasoning can improve upon standard Nash-like outcomes – other strands of the
literature explore strategic interactions from orthogonal perspectives, including frameworks such as
Correlated Equilibrium and Bayesian Games.

The concept of Correlated Equilibrium (CE), introduced by Aumann [1], generalizes Nash Equilib-
rium by allowing players to coordinate their strategies through signals from an external correlation
device. Unlike in Nash equilibria, where each player optimizes independently, correlated equilibria
permit coordinated play, which can yield higher social welfare. This framework is particularly
effective in settings where cooperation can be facilitated by signals or mediators without direct
communication. In addition, CE is often easier to compute and achieves better efficiency in certain
games, especially when compared to independently derived strategies. Applications include traffic
routing, bargaining, multi-agent learning, and regret minimization.

Another important extension is Bayesian Games, introduced by Harsanyi [16], which address strategic
interactions under incomplete information. Here, players possess private information about their
own types (e.g., preferences, available actions, or payoffs) but maintain beliefs about others’ types,
often represented by probability distributions. This framework allows players to form and update
strategies based on their beliefs. Bayesian Games naturally model scenarios involving uncertainty
about the environment or about other agents, such as auctions, signaling games, contract theory, and
mechanism design. From a computational standpoint, they introduce additional complexity due to
the structure of beliefs and type spaces.

Comparing these frameworks to the standard Nash equilibrium setting shows how they enrich strategic
analysis by incorporating coordination (in CE) and information asymmetry (in Bayesian Games). In
this section, we offer a preliminary discussion on how these concepts relate to causal reasoning, and
how counterfactual thinking may further enhance strategic decision-making in complex environments.

Specifically, we argue that the notion of information, as traditionally understood in the literature, is
orthogonal to the causal structure captured in Causal Normal Form Games (CNFGs). This means
that the causal framework can be naturally extended to incorporate sources of information available
to agents. We first will revisit the standard definitions of normal form games (Sec. C.1), correlated
equilibrium Sec. C.2, and Bayesian games (Sec. C.3) using formal causal language. We then introduce
CNFGs with information and compare them to these classical game-theoretic frameworks (Secs. C.4
and C.5), highlighting their expressive differences and extensions.

C.1 Standard versus Causal Normal-Form Games

To ground the discussion and establish a common denonimator, we start with the definition discussed
earlier, first of a causal normal form game (Def. 2.10):
Definition C.1 (Causal Normal Form Game). A tuple # = ↘M,A,R≃ is a Causal Normal Form
Game (CNFG, for short), where

• M is a CMAS ↘M,N,X,Y≃,
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• A = (A1, . . . ,An) is the set of policies for the n agents, where Ai ↓ {A1
,A2

,A1 ↖
A2

,A3},

• R = (R1, . . . ,Rn) is the set of reward functions.

Next, we provide the standard definition of a normal form game.
Definition C.2. A Normal-Form Game is defined as a 3-tuple G = (N,A, u) where

• N : set of players.

• A = A1 ↗ · · ·↗An: action space, where Ai is the set of actions available to player i.

• u = (u1, . . . , un): utility functions, where ui : A ⇔ R.

Whenever the policy space is constrained for the interventional layer (L2), CNFG reduces to an NFG.
Theorem C.3. A CNFG with L2 actions can be converted to an NFG and vice versa with the same
action space A.

Proof. The proof is constructive. CNFG with L2 actions can be converted to a normal form game,
simply by having the L2 interventions as actions and E[Ri(Yi(x))] as the utility. The other way can
be done as follows: define an action variable Xi for each of the n agents, where DXi = Ai. Then
define Yi(x) = ui(x) and R as a set of identity functions.

Hence, a definition of a Normal Form Games in the causal terms would be:
Definition C.4. A Normal-Form Game is defined as a 3-tuple # = ↘M,A,R≃ where

• M is a CMAS ↘M,N,X,Y≃,

• A = (A2
1, . . . ,A2

n) is the set of L2 policies for the n agents,

• R = (R1, . . . ,Rn) is the set of reward functions.

This gives an intuitive understanding of why and how CNFGs generalize NFGs – a claim made in
Thm. 2.11. For concreteness, consider the following example.
Example C.5 (Prisoner’s Dilemma). Consider the classical Prisoner’s Dilemma game with payoffs
as shown in Fig. 7b. To represent this game as a CNFG, define X1 and X2 as the action variables in a
CMAS, and Y = Y1, Y2 as the corresponding reward signals. Assume X1, X2 are binary, where 0
represents cooperation (C) and 1 represents defection (D). Define Y1 and Y2 as deterministic functions
of X1 and X2, based on the given payoff table. For completeness, let X1 = U1 and X2 = U2, where
the prior distribution over exogenous variables is P (U1 = 1) = P (U2 = 1) = 0.5. Note that this
distribution is defined for formal completeness but does not affect the L2 payoffs.

To convert this CNFG into an NFG, we focus on L2 actions. The L2 policy space A2 maps to the
action values of X1 and X2, i.e., either 0 (C) or 1 (D). The payoff for any joint action (x1, x2) is
given by E[Y | do(x1, x2)], aligning exactly with the utility function in the standard Normal Form
representation. ↭

As discussed earlier, Thm. 2.11 noted that a CNFGs is strictly more expressive than NFGs by showing
two CNFGs that agree on the interventional layer but may have different equilibirums, when other
layers of PCH are considered.

C.2 Correlated Equilibrium

In this section, we investigate how CNFGs can be extended to systems with information – an important
step toward modeling more realistic decision-making scenarios. We begin by examining Correlated
Equilibrium through a classical example known as the Battle of the Sexes.
Example C.6 (Battle of Sexes). A couple of agents want to spend time together in the evening.
Agent 1 wants to go to the ballet, while Agent 2 prefers a football match. Their payoffs, based on
whether they go to the ballet or football, are shown in Tab. 10. The symmetric Nash equilibrium for
this game occurs when both agents go to their preferred location two-thirds of the time, yielding a
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Player 1
Player 2

X2 = B X2 = F

X1 = B 2, 1 0, 0

X1 = F 0, 0 1, 2

Figure 10: Payoff matrix for Battle of Sexes

P1
P2

L1 X2 = B X2 = F

L1 1.875, 1.875 0.875, 1.375 1.375, 0.875

X1 = B 1.375, 0.875 2, 1 0, 0

X1 = F 0.875, 1.375 0, 0 1, 2

Figure 11: Payoff matrix for Battle of Sexes with L1

and L2 actions

X1 X2

Y1 Y2

C

Figure 12: Battle of Sexes with Information from
a coin toss

X1 X2

Y

Figure 13: Causal Diagram for Battle of Sexes
with unobserved confounding

joint payoff of (0.75, 0.75). We can represent this Normal Form Game as a CNFG with L2 actions.
The causal diagram corresponding to the SCM is shown in Fig. 12. The actions of the agent i in this
SCM is given by do(Xi = B) and do(Xi = F ) for i ↓ {1, 2}.

Suppose the players now have access to a coin and observe the outcome of the toss, H,T , making
decisions accordingly. Assume they follow the strategy {H ⇔ B, T ⇔ F} – that is, if the coin
shows heads, they go to the ballet; if it shows tails, they go to the football match. Note that this is an
equilibrium strategy, as neither player has an incentive to deviate from it. The resulting equilibrium
payoff is (1.5, 1.5). Such an equilibrium is called a correlated equilibrium, and it is superior to the
Nash equilibrium.

We can also represent this graphically in the causal diagram. In Fig. 12, a new variable C can be
introduced, which takes two values {H,T}, each with probability 0.5. Now, since the outcome of
the coin is available to the two agents, they can condition their policies on the outcome of this coin.
So, the new policy space of the agents would be a mapping from outcome of coin to the show they
want to attend, that is Ai : {H,T} ⇔ {B,F}. If we are talking of mixed strategy, the policy of the
agent is given by the distribution ωi(· | C) over the values {F,B}. Thus, we can simply represent
additions of random variables in a correlated equilibrium as new variables in the causal model (also
known as confounders).

We now formally define Correlated Equilibrium using causal language.
Definition C.7 (Correlated Equilibrium). Given a CNFG # = ↘M,A2

,R≃ with policy space re-
stricted to L2, a correlated equilibrium (S, P (S),ω) is a tuple, where S = (S1, . . . , Sn) is a tuple of
random variables with distribution P (S) and ω = (ω1, . . . ,ωn) is the set of mappings ωi : DSi ⇔ A2

i
and for each agent i and every other mapping ω

→
i,

∑

s↓DS

P (s)Ri(Yi[X1=ε1(S1),...,Xi=εi(Si),...Xn=εn(Sn)])

∝
∑

s↓DS

P (s)Ri(Yi[X1=ε1(S1),...,Xi=ε↑
i(Si),...Xn=εn(Sn)]) (19)

As observed in the previous example, it is possible to represent the correlated equilibrium as a NE of
a CNFG with information. Next, we formally define CNFG where the agents have access to pieces of
information (possibly shared) before acting.
Definition C.8 (CMAS with States). A Causal Multi-Agent System (CMAS) with states is a tuple
↘M,N,X,S,Y≃, where M : ↘U,V,F , P ≃ is an SCM and

• N is the set of n agents,
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Police
Suspect

S = 1 S = 0

P = 1 0, 0 2,↔2

P = 0 ↔2,↔1 ↔1, 1

Figure 14: Payoff when suspect is criminal
(that is T = 1).

Police
Suspect

S = 1 S = 0

P = 1 ↔3,↔1 ↔1,↔2

P = 0 ↔2,↔1 0, 0

Figure 15: Payoff when suspect is civilian
(that is T = 0).

• X = (X1, . . . ,Xn) is the ordered set of action nodes with Xi,Xj ⇒ V for i, j ↓ [n] and
Xi △Xj = ▽ if i ⇑= j,

• S = (S1, . . . ,Sn) is the ordered set of context nodes Si ⇒ V for the agent i for i ↓ [n],
and for all i ↓ [n], Si ⇑↓ De(Xi)

• Y = (Y1, . . . ,Yn) is the ordered set of reward signals, with Yi ⇐ V for all i ↓ [n]. ↭

Once we have introduced the notion of a CMAS to model the environment, we can consider the
information available to the agents about the states.
Definition C.9 (CNFG with Information). A tuple # = ↘M,A,R, I≃ is a Causal Normal Form
Game (CNFG), where

• M is a CMAS with states ↘N,M,X,S,Y≃,

• A = (A1, . . . ,An) is the set of policies for the n agents, where Ai ↓ {A1
,A2

,A1 ↖
A2

,A3},

• R = (R1, . . . ,Rn) is the set of reward functions.

• I is the information available to the agents. ↭

The information I can take many forms and is introduced to make the definition more complete
and general. For example, one form of information might be the distribution over states, P (S),
which helps illustrate the relationship between Correlated Equilibrium and equilibrium concepts in
CNFGs with states. Other forms of information available to the agents could include interventional
or counterfactual distributions. While this is outside the scope of the present paper, it presents a
promising direction for future work.
Theorem C.10. If (S, P (S),ω) is a correlated equilibrium of NFG #, then, ω is a NE of the CNFG
with Information designed as follows:

1. X = (X1, . . . , Xn) are the actions and Y = u(x) for each combination are obtained from
NFG #. R is identity for all agents.

2. Introduce variables S = (S1, . . . , Sn) with distribution P (S).

3. Define the L2 action space A2
i for the agent i as soft interventions ω(Xi | Si)

4. P (S) is available to the agents and the expected payoff for policies ω is given by:

Proof. The proof follows from the definition of correlated equilibrium. Since ω is the policy in the
correlated equilibrium, it is also the best response as per Eq. 19. Hence, if every agent is playing the
best response given S, we have each agent is playing NE policy (from Def. A.8) in the game with
policies conditioned on S.

C.3 Bayesian Games

Here, we introduce an additional layer of complexity in the information structure through the concept
of Bayesian Games. Before presenting the formal definition, we begin with an example.
Example C.11 (Sheriff’s Dilemma). A police officer faces an armed suspect, and they must simulta-
neously decide whether to shoot. The suspect could be either a criminal or a civilian, but the officer
is unaware of the suspect’s true identity. It is preferable for the suspect to shoot if they are a criminal
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T

P S

Y

ωP ωS

Figure 16: Causal Diagram for Sheriff’s
Dilemma with L2 policy space.

T

P S

Y

UT

UP

Figure 17: Causal Diagram for Sheriff’s
Dilemma with L1 policy space.

and not to shoot if they are a civilian. However, in hindsight, it is better for the officer to shoot if the
suspect shoots – but in reality, they must act simultaneously.

Depending on the type of the player, criminal or civilian, the payoffs corresponding to the actions of
the players are shown in Fig. 14 and Fig. 15 respectively. Now, the question is how do we compute
the best policy for the agents.

Let’s start with the suspect’s actions. If the suspect is a criminal, then shooting is a dominant strategy
and if the suspect is a civilian, not shooting is the dominant strategy. However, from the perspective
of the policmen, things are not so simple, since they do not know the type of the suspect. If they
know that the suspect is highly likely to be criminal, then it is better for them to shoot, and otherwise
not. Hence, in order to form a decision, they need to have a belief over the likelihood of someone
being a criminal.

The scenarios can be represented in a corresponding causal graph shown in Fig. 16. The variable
T represents the type of the suspect: T = 0 indicates a civilian, and T = 1 indicates a criminal.
The variable P captures the officer’s decision to shoot or not, while S denotes whether the suspect
chooses to shoot. If we consider L2 actions only, then the policy space is a soft intervention over the
values of P . Finally, Y = (Y1, Y2) represent the utilities of the officer and the suspect, respectively.
The value of Y as a function of P, T and S is shown in Fig. 15 and Fig. 14. In addition, the agent
should also have a belief of the likelihood of someone being criminal, that is P (T ).

This class of Games where there is an uncertainty about the nature of the game is called Bayesian
Game. Formally, Bayesian Games can be defined as follows [16]:
Definition C.12 (Bayesian Games). A Bayesian Game is a tuple ↘N,A,$, p, u≃, where

• N is the set of n players indexed by i;

• A = A1 ↗ . . .↗An, where Ai is the action set available to player i;

• $ = $1 ↗ . . .↗$n where $i is the type space for player i;

• p : $ ⇔ [0, 1] is a common prior over types;

• u = (u1, . . . , un) where ui : A↗$ ⇔ R is the utility function for player i

Now, we formalize the idea of Bayesian Games in the causal framework.
Theorem C.13 (Bayesian Games in Causal Framework). A Bayesian Game is a CNFG with informa-
tion # = ↘M,A2

,R, I≃, where M is a CMAS with states.

Proof. The construction follows in the same way as Normal Form Games, but now with introduction
of the type variables. The CMAS contains the variables X corresponding to the actions A, state
variables S corresponding to the type $, Y(x) = u(x) and R is the identity function. The information
available to the agents is P (S).

Now, a best response ω
↑
i to a strategy profile ω↔i in a Bayesian Game is defined as

BRi(ω↔i) = argmax
ε↑
i

EU(ω→
i,ω↔i) (20)

Definition C.14 (Bayes-Nash Equilibrium). A Bayes Nash Equilibrium is a strategy profile ω such
that for all i, ωi ↓ BR(ω↔i).
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X2 = B X2 = F

U2 = 0 U2 = 1 U2 = 0 U2 = 1

X1 = B U1 = 0 3, 0 3, 3 0, 0 0, 0
U1 = 1 0, 0 2, 1 0, 0 0, 0

X1 = F U1 = 0 0, 0 0, 0 0, 3 0, 0
U1 = 1 0, 0 0, 0 3, 3 1, 2

Table 2: Battle of Sexes with Unobserved Confounding

C.4 CNFG and Correlated Equilibrium

In Sec. C.2, we saw how we can represent correlated equilibrium with L2 actions. However, SCMs
can inherently represently two more layers of distribution L1 and L3. Using the more general action
space is not only a matter of choice, but can be essential in obtaining a better payoff (that is finding
the corresponding equilibrium), as illustrated in the following example.
Example C.15 (Causal Battle of Sexes). Considering Ex.C.6, we note that, in reality, the decision
to go to the ballet or the football game may be influenced by several external factors. For example,
when a new ballet is released, agent 1 – who generally prefers football – may also want to attend the
ballet. Conversely, if there is a major football event, such as the Super Bowl, agent 2 may also be
happy to join agent 1 for the match. These unobserved factors can therefore influence the preferences
of both players. The corresponding causal graph is shown in Fig.13.

In addition, the importance of the event may also affect the payoffs. Let U1 = 0 (U2 = 0) indicate
that there is a major football match (ballet performance), and U1 = 1 (U2 = 1) that the football
match (ballet) is not particularly significant. Now, both agents’ intuitions are given by:

Xi =






F if U1 = 0, U2 = 1
B if U1 = 1, U2 = 0
F or B with equal probability otherwise

(21)

This means that if either the ballet or football performance is particularly good, the agents choose
to attend that event. If both events are equally good or equally unappealing, they make the decision
randomly. The payoff for such an L1 action is (1.875, 1.875). In contrast, if they instead base their
decisions on signals from a coin toss, the resulting payoff is (1.5, 1.5) – lower than what they would
receive by following their natural intuitions.

We now define a correlated equilibrium over a general CNFG, where the agents’ action spaces may
correspond to L1, L2, or L3 policies.
Definition C.16 (Causal Correlated Equilibrium). Given a CNFG # = ↘M,A,R≃, a causal correlated
equilibrium (S, P (S),ω) is a tuple, where S = (S1, . . . , Sn) is a tuple of random variables with
distribution P (S) and ω = (ω1, . . . ,ωn) is the set of mappings ωi : DSi ⇔ Ai and for each agent i
and every other mapping ω

→
i,

∑

s↓DS

P (s)Ri(Yi[X1=ε1(S1),...,Xi=εi(Si),...Xn=εn(Sn)])

∝
∑

s↓DS

P (s)Ri(Yi[X1=ε1(S1),...,Xi=ε↑
i(Si),...Xn=εn(Sn)]) (22)

The definition is similar to that of a classical correlated equilibrium, except that the equilibrium is for
a CNFG with action spaces that can span across any layer of the PCH.

C.5 CNFG and Bayesian Games

Similarly, in Bayesian Games, agents need not be restricted to layer L2, as L1 and L3 policies may
potentially yield higher rewards, as illustrated next.
Example C.17 (Causal Sheriffs Dilemma). Consider Ex. C.11. In reality, the situation may not be
so simple or well-defined. Unobserved factors might influence both the officer’s assessment of the
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Action Space Payoff depends on
agents' actions

Agents act based
on a signal

Agents act based on
type and has belief

about the types

Normal Form Games
(Def. C.2)

Correlated
Equilibrium
(Def. C.7)

Bayesian Games
(Def. C.13)

Causal Normal
Form Games
(Def. 2.10)

Causal Correlated
Equilibrium
(Def. C.16)

Causal
Bayesian Games

(Def. C.18)

Figure 18: Comparison of different representations with information and action spaces

suspect and the suspect’s decision to shoot. For instance, a suspect’s background might affect both
their likelihood of being a criminal and their behavior. A well-trained officer might intuitively discern
such subtle cues and make a quick judgment about whether to shoot. An untrained officer, on the
other hand, may lack this ability and be more prone to error. This creates unobserved confounding
between the suspect’s identity and the officer’s tendency to shoot. In other words, the officer may not
be able to articulate why they want – or do not want – to shoot, but their instinct carries information
about their internal state.

Consider two scenarios, M1 and M2, that induce the same causal diagram shown in Fig. 17. In M1,
the officers are well-trained; in M2, they are not. In both scenarios, let an adverse background be
denoted by the variable UT = 1, with P (UT = 1) = 0.1. Suppose the suspect is a criminal, that is,
T = 1 if and only if they come from an adverse background. This background may influence the
suspect’s behavior, which in turn can influence the officer’s decision to shoot. In the causal diagram,
this pathways are represented by the dashed arrows.

Further, in scenario M1, the officer is able to pick up on these non-verbal cues, and their probability
of shooting is given by P (P = 1 | UT = 1) = 0.9 and P (P = 0 | UT = 0) = 0.9. In the second
scenario, M2, the officer almost always makes mistakes, and their probability of shooting is given by
P (P = UT ) = 0.1. The payoffs Y = (Y1, Y2), as a function of P , T , and S, are shown in Tables 14
and 15.

Now suppose Congress wants to recommend a new policy by passing a law that determines whether
officers should shoot or not. They disregard the officers’ natural intuitions entirely and compute the
Bayesian Nash Equilibrium (BNE) of the game induced by the model, concluding that it is better if
the officer does not shoot at all. The expected payoff for the officer under the BNE is therefore given
by:

µBE = ↔2 · 0.1 = ↔0.2 (23)

However, if the law is not implemented, then in M1 and M2, the expected L1-payoff of the policeman
are respectively

µ1 = ↔0.11, µ2 = ↔0.99 (24)
This implies µ2 < µBE < µ1, indicating that, even though both SCMs induce the same Bayesian
game, implementing the law would be harmful in M1, while beneficial in M2.

In essence, this is similar to the scenarios illustrated in Ex. 1.1. Now, we can rewrite the definition of
Causal Bayesian Games without restricting ourselves to L2 layer.
Definition C.18 (Causal Bayesian Games). A Bayesian Game is a CNFG with information # =
↘M,A,R, I≃, where M is a CMAS with states.

Note that even if two CMASs coincide on their L2 distributions, they may differ in their L1 and L3

distributions – particularly in the corresponding L1 and L3 actions. This is formalized below.
Theorem C.19. Given a Bayesian Game, there exists two Causal Bayesian Games #1 and #2 with
expected L1 payoffs µ1 and µ2 and Bayes-Nash Equilibrium (BE) payoffs µBE, such that

µ2 ′ µBE ′ µ1 (25)
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X2 = 0 X2 = 1
U2 = 0 U2 = 1 U2 = 0 U2 = 1

X1 = 0 U1 = 0 ↔2, 2 ↔2,↔6 ↔2,↔6 ↔2, 2
U1 = 1 2,↔2 ↔4, 0 ↔4, 0 2,↔2

X1 = 1 U1 = 0 2,↔2 ↔4, 0 ↔4, 0 2,↔2
U1 = 1 ↔2, 2 ↔2,↔6 ↔2,↔6 ↔2, 2

Table 3: Y1, Y2 as a function of U1, U2, X1, X2 for SCM in Table 2b

Proof. The construction is similar to the one in the proof of Thm. 2.11.

The above discussion illustrates the fact that information structure and actions based on layers of
PCH are orthogonal to each other. We can have one without the other and even both of them in the
same model, without compromising the other. The summary of the axis can be shown in Fig. 18.

D Additional Examples and Discussion

D.1 SCM for Table 2b

Consider the SCM with U = {U1, U2},X = {X1, X2} and Y = {Y1, Y2}. The domains of
U1, U2, X1 and X2 are {0, 1}. P (U1 = 0) = P (U2 = 0) = 0.5. X1 = U1 and X2 = U2. Y as a
function of U1, U2, X1, X2 are shown in Table 3.

The action space available to Player 1 and Player 2 are A3 and A1 ↖A2 respectively.

D.2 Assumptions for Alg. 2

For the algorithm to work, we will make the following assumptions. Assume that the learning is from
the perspective of Player 1.
Assumption D.1 (Identifiability of Mixture). Let Yx1,x2 | x→

1, x
→
2i ∞ ϖi, for i ↓ k, where ϖi is a

distribution dependent on x
→
1, x1, x2 and k = |D(X)|. We assume that the distributions are such that

their mean and weights are identifiable from their mixture upto a permutation of the i’s:
k∑

i=1

piϖi(x
→
1, x1, x2) (26)

or, the distributions are same for all i ↓ [k].

Next, we show some example distributions and conditions that satisfy the above assumption.
Example D.2 (Deterministic Function). Consider the case when P (Yx1,x2 | x→

1, x
→
2) has all its mass

on a single point. In addition, assume that

E[Yx1,x2 | x→
1, x

→
2i] ⇑= E[Yx1,x2 | x→

1, x
→
2j ]

for i ⇑= j. Then, for each (x→
1, x1, x2) we will get k distinct values of Y, and we can map each

(Yi, x
→
1, x1, x2) to a particular i and pi = P (Yi | x→

1, x1, x2) for i ↓ [k].
Example D.3 (Gaussian Mixtures). Yakowitz and Spragins [47] showed that mixture of multi-variate
Gaussians are identifiable. Hence, we can get the mixing proportions and the mean of the Gaussians
from the sufficient amount of data.

The next assumption ensures that Player 1 can correctly deduce the intuition of the other player from
the observations.
Assumption D.4. For all assignments x→

2, x
→→
2 to the natural intuition of the second player P (x→

1, x
→
2) ⇑=

P (x→
1, x

→→
2).

Note that if P (x→
1, x

→
2) are sampled from a continuous distribution then the assumption is true almost

surely.
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Figure 19: Frequencies of rewards observed for a particular tuple (x→
1, x1, x

→
2)

Figure 20: Probabilities of the rewards observed for a particular tuple (x→
1, x1, x

→
2)

Table 4: Payoff Matrix learned by Player 1 in Causal Prisoner’s Dilemma

X2 = X
→
2 do(X2 = 0) do(X2 = 1) X2 = 1↔X

→
2

X1 = X
→
1 ↔2.443,↔2.450 ↔1.218,↔2.684 ↔8.892, 0.000 ↔7.668,↔0.239

do(X1 = 0) ↔2.683,↔1.235 ↔0.983,↔0.983 ↔6.932,↔0.490 ↔5.232,↔0.239

do(X1 = 1) 0.000,↔8.848 ↔0.475,↔6.951 ↔1.960,↔1.897 ↔2.435, 0.000

X1 = 1↔X
→
1 ↔0.240,↔7.637 ↔0.240,↔5.250 0.000,↔2.387 0.000, 0.000

D.3 Ctf-Nash Learning on Causal Prisoner’s Dilemma

This section shows the results of applying Ctf-Nash-Learning on Causal Prisoner’s Dilemma.
The experiment was carried out on 100K samples of (x→

1, x1, x2,y) when both agents were playing
Ctf-RCT. The rewards were assumed to be deterministic, that is, P (yx1,x2 | x→

1, x
→
2) has a point mass.

Now, for each tuple (x→
1, x1, x2) the frequencies of y obtained are shown in Fig. 19. For example,

when (x→
1, x1, x

→
2) is (0, 1, 0), then the reward (0,↔14) was observed nearly 9000 times while (0, 0)

was observed 6000 times, and when it is (0, 1, 1), then the reward (0,↔8) occurs nearly 6000 times
and (0, 0) occurs nearly 9000 times, and so on.

From this frequency table, we can compute the probabilities as shown in Fig. 20. For instance, when
(x→

1, x1, x
→
2) is (0, 1, 0), the two values of x→

2 are taken with a probability of roughly 0.6 and 0.4. The
same is observed for the tuple (0, 1, 1). Hence, one value of x→

2 occurs with a probability of 0.6
and the other with 0.4. However, there is no way to know whether it is 0 or 1 that occurs with a
probability 0.6. This results in a permuation of the actions. For example, if x→

2 is correctly identified,
that is x̂→

2 = x
→
2 then (x̂→

2 = 0, x2 = 0), (x̂→
2 = 1, x2 = 1) would correspond to the natural instinct or

action (X2 = X
→
2). However, if they are not correctly identified, that is x̂→

2 = 1↔ x
→
2, then the same

would correspond to acting against intuition (X2 = 1↔X2).
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The learned payoff matrix is shown in Table. 4. Even if the actions are permutations of the original
payoff matrix, the equilibrium remains same. Hence, the algorithm will be able to find the equilibrium
correctly.

The code is available at https://anonymous.4open.science/r/CGT-NeurIPS25/.

D.4 Forgetting in Prisoner’s Dilemma

As noted in Sec. 3, it is not always in the best interest of the agents to forget. Consider the classical
prisoners dilemma: the choices of the action spaces are {C}, {D} and {C,D} and forget about
whatever is not included in the sets. The metagame over the choice of the action spaces is shown
below.

P1
P2 {C} {D} {C,D}

{C} ↔1,↔1 ↔7,↔0.5 ↔7,↔0.5

{D} ↔0.5,↔7 ↔1.9,↔1.9 ↔1.9,↔1.9

{C,D} ↔0.5,↔7 ↔1.9,↔1.9 ↔1.9,↔1.9

Table 5: Extended Prisoner’s Dilemma with a third action CD

Note, if both the agents forget about defecting D, and plays only C, then one of the agents can move
to the action space {C,D} and get a better payoff while the other is worse of. The resultant NE of
this metagame thus also turns out to be (↔1.9,↔1.9) with action spaces {D} or {C,D}. Thus in
classical prisoners dilemma, agents do not have advantage with forgetting.

E FAQ

1. What are L1, L2, and L3 actions, and why are they essential in modeling decision-making?
A: Pearl [31] and Bareinboim et al. [4] introduced a framework for studying real-world systems –
ranging from experiments in medicine to analyses of climate models – using causal models such
as Structural Causal Models (SCMs). An SCM induces three levels of distributions: observational
(L1), interventional (L2), and counterfactual (L3). One of the key results in this literature is the
Causal Hierarchy Theorem (CHT), which states that these three levels of distributions form a strict
hierarchy and do not collapse. That is, given an L1 distribution, there may be multiple SCMs that
induce the same L1 distribution but yield different L2 distributions. Likewise, given both L1 and L2

distributions, multiple models may still differ in their induced L3 distributions [4, Thm. 1].

In decision-making systems, an agent interacts with the environment (and possibly with other agents)
through its actions. If the agent does nothing and simply observes, this behavior corresponds to an
L1 action. If it disregards its intuition and performs an intervention (either hard or soft) it engages
in an L2 action. If the agent’s realized action depends on what it would have done under natural
circumstances (i.e., its L1 action), then the behavior corresponds to a counterfactual, or L3, action.
These distinctions in decision-making have been studied extensively over the past decade, including
in Bareinboim et al. [3, 2].

A particularly relevant work that forms the basis for our discussion in the single-agent setting
is Bareinboim et al. [2], which introduces a scenario known as the Greedy Casino (reviewed in
Appendix A). In this setting, there are machines that may blink and patrons who may be drunk. If
a machine is blinking and a patron is intoxicated, the patron is more likely to play that machine
instinctively (i.e., subconsciously). Conversely, if the patron is sober and the machine is not blinking,
they tend to prefer a different option. This behavior reflects natural predispositions, biases, and
inclinations, and is modeled as an L1 action.

Of course, this is a stylized example, but human agents often behave in similar ways – acting without
full awareness of the underlying causes of their decisions. This phenomenon has been extensively
studied in behavioral decision-making and cognitive psychology, most notably in the work of Daniel
Kahneman and collaborators [19]. In contrast, an L2 action in a single-agent setting may involve
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flipping a coin and allowing the coin toss to determine which machine to play. This process effectively
averages over the agent’s internal biases and corresponds to what is formally called the causal effect.

These L1 and L2 behaviors are fundamentally distinct from a counterfactual scenario, in which an
agent intends to play machine X = x but ends up playing X = x

→. Formally, this is represented by
the counterfactual quantity P (YX=x | X = x

→). Note that if the agent naturally plays X = x
→, this

implies they were not initially inclined to play X = x (see Fig. 2a for an illustration). This type of
counterfactual evaluation was made possible by the introduction of counterfactual randomization
[3], precisely to decouple the agent from its natural flow and enable the estimation of Q. 1 The
theoretical limits of which counterfactuals can be physically inferred from the world have been
recently characterized [34]. In positive cases, once the counterfactual randomization step is performed,
the agent’s intuition becomes a new type of information, which can then be conditioned upon.

2. Why are Causal Models essential if they can be converted into a matrix game with counter-
factual actions?
A: Structural causal models (SCMs) are essential for constructing the payoff matrix (e.g., Fig. 3).
In particular, determining the payoffs corresponding to L1 and L3 actions inherently relies on the
underlying causal model. Once this matrix is computed, it may be viewed as a normal-form game.
However, there are four critical phases where causal modeling plays a vital role:

• Representation: Traditional game theory lacks the concept of natural actions; it primarily
deals with interventions, corresponding to L2 actions in our causal framework. Once the
existence of natural actions is acknowledged, the action space expands to include L1, L2,
and L3, enabling the construction of a richer payoff matrix.
Example 1.1 illustrates this distinction more explicitly: two SCMs may yield identical
payoffs and equilibria in the L2 action space, yet diverge significantly when L1 and L3

actions are considered. This expanded matrix – and its associated equilibria – is difficult
to recover without causal assumptions or an underlying structural model. For instance,
suppose we observe repeated instances of the scenario in Ex. 3.1 and attempt to infer the
payoffs for the actions (C,C), (C,D), (D,C), and (D,D) from observational data. We
might obtain (↔1.4,↔1.4), (↔8, 0), (0,↔8), and (0, 0), respectively. However, if agents
follow a randomized controlled trial (RCT) protocol, the corresponding payoffs could
be (↔1,↔1), (↔7,↔0.5), (↔0.5,↔7), and (↔1.9,↔1.9). An underlying causal model
with unobserved confounders can explain this discrepancy. The three layers of the causal
hierarchy – observational, interventional, and counterfactual – were formally introduced in
Bareinboim et al. [4].

• Agency and Execution: Causal modeling also addresses the practical question of how
agents can implement these actions. While the payoff matrix in Fig. 3.1 encodes the
outcomes, it does not specify the mechanisms by which those actions are executed. From
prior results in causal decision theory, we know that L1 actions correspond to passively
observing the system, L2 actions to standard interventions (e.g., RCTs), and L3 actions
require more advanced techniques, such as counterfactual randomization (e.g., ctf-RCT).
Thus, causal modeling provides a bridge between abstract game-theoretic strategies and their
realizability in practice. (In fact, the notion of counterfactual realizability – achieved through
a specificd type of randomization – appears to exhaust what is physically implementable in
the real world; for a more refined discussion, see Raghavan and Bareinboim [33].)

• Solution Concept: Our solution concept goes beyond merely computing a Nash equilibrium
over an expanded action space. Causal modeling introduces a hierarchy of action spaces,
allowing agents to commit to specific layers (e.g., L1, L2, L1 + L2, L3) and ignore the
others. This gives rise to a new “metagame,” where the strategic choice involves selecting a
layer of the PCH, and the equilibrium is computed within the corresponding subspace. This
layered structure adds a new dimension to strategic reasoning and highlights the importance
of causal structure in shaping the space of strategic possibilities.

• Learning: Normal-form representations overlook the structure linking agents’ intuitions to
their executed actions, whereas CNFGs can capture this relationship directly. In practice,

1There are intriguing connections here to the notion of free will (see Pearl’s 2013 discussion, “The Curse of
Free Will and the Paradox of Inevitable Regret”).
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agents may not observe the other agent’s intuition when learning the payoff matrix. In such
cases, this structural distinction becomes essential, and is explicitly exploited in Alg. 2.

3. Is the causal graph necessary? How does it help?
A: Causal graphs contain information about the structural dependencies between variables. For
example, when the SCM is Markovian in a CNFG, the optimal actions or equilibrium strategies
will always lie in L2. However, when Markovianity does not hold, the optimal strategies may fall
anywhere between L1 and L3. Without further knowledge of the parameters – either through prior
knowledge or interaction with the system—it is impossible to determine which strategy is better.

4. How does this work relate to prior works?
A: Our goal in this paper is to develop a model that captures both instinctive and deliberate decision-
making processes of the human mind. Structural Causal Models provide a principled framework
for representing reality as closely as possible. Some prior works have attempted to reconcile causal
models and game theory. However, due to differing goals, their models can be extremely restrictive,
as discussed in detail in Appendix A.7.
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