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Abstract

In a decision-making process, intelligent agents
with causal knowledge can optimize action spaces
to avoid unnecessary exploration. A structural
causal bandit framework provides guidance on
how to prune actions that are unable to maximize
reward by leveraging prior knowledge of the un-
derlying causal structure among actions. A key
assumption of this framework is that the agent has
access to a fully-specified causal diagram repre-
senting the target system. However, this assump-
tion is often violated, making it difficult to apply
in real world. In this paper, we extend the multi-
armed bandits framework with structural causal
models, also known as structural causal bandits,
to scenarios where the agent leverages a Markov
equivalent class. In such cases, the causal struc-
ture is provided to the agent in the form of maxi-
mal ancestral graphs (MAGs) or partial ancestral
graphs (PAGs). We propose a generalized frame-
work for identifying potentially optimal actions
within these graph structures, thereby broadening
the applicability of structural causal bandits to
real-world settings.

1. Introduction
The multi-armed bandit (MAB) (Robbins, 1952; Lai and
Robbins, 1985; Lattimore and Szepesvári, 2020) problem is
a central topic in decision-making studies, where an agent
aims to maximize cumulative rewards by repeatedly choos-
ing actions (or pulling arms) based on observed reward, bal-
ancing the exploration-exploitation trade-off. Traditionally,
MAB problems assume independence among the rewards of
different arms, meaning that the reward obtained from one
arm provides no information about the others e.g., KL-UCB
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(Cappé et al., 2013) and Thompson sampling (Thompson,
1933). Although this independence assumption simplifies
the problem, it limits its applicability to real-world scenarios
where dependencies among actions are common, e.g., in
a movie recommendation system, the positive reaction of
a user to one genre can indicate a higher likelihood of a
positive reaction to similar genres.

Recent research has increasingly recognized the importance
of structured dependencies among arms and reward (Li et al.,
2010; Abbasi-Yadkori et al., 2011; Cesa-Bianchi and Lu-
gosi, 2012), leading to the development of structured bandits.
Concurrently, the integration of causal inference into the
MAB framework has opened new avenues for modeling and
solving decision problems with richer dependency structures
(Bareinboim et al., 2021). Causal diagrams (Pearl, 1995)
have been employed to represent causal relationships among
actions, rewards, and other relevant factors. This approach
enables agents to make informed decisions by considering
how each action causally influences the reward through
causal pathways. Existing studies (Bareinboim et al., 2015;
Lattimore et al., 2016; Forney et al., 2017) have shown
that causality-aware strategies can significantly outperform
MAB algorithms that do not account for such underlying
causal relationships. Subsequent work has explored various
specialized settings by introducing additional structural as-
sumptions, such as the availability of both observational and
experimental distributions, or linear mechanisms (Zhang
and Bareinboim, 2017; Lu et al., 2020; Bilodeau et al., 2022;
Feng and Chen, 2023; Varici et al., 2023).

Specifically, Lee and Bareinboim (2018) formalized the
structural causal bandit (SCM-MAB) without any paramet-
ric assumptions, where causal dependencies between arms
are modeled using a structural causal model (SCM) (Pearl,
2000). They proposed a sound and complete graphical char-
acterization to identify minimal intervention sets (MISs)
and possibly-optimal minimal intervention sets (POMISs),
where the former includes only the variables that affect the
reward, and the latter refers to actions that could be part of
an optimal strategy among MISs, thereby guiding the agent
to avoid unnecessary exploration without any actual inter-
action. Lee and Bareinboim (2019) extended this approach
to accommodate scenarios involving non-manipulable vari-
ables among all the variables in the graph. Lee and Barein-
boim (2020); Everitt et al. (2021) established SCM-MAB
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Figure 1: Causal diagrams (a, b) with corresponding (c, d) MAGs and (e) PAG. A visible edge is marked with v next to it.

with stochastic policies and Carey et al. (2024) studied the
completeness of its graphical characterization.

While SCM-MAB has been established as a general frame-
work, it is challenging to align with real-world scenarios,
as these studies assume that the decision-making agent has
perfect access to the entire causal structure. In practice, only
a Markov equivalence class of the true causal diagram over
observed variables can be inferred from observational data
without making a substantial assumption about causal mech-
anisms such as causal sufficiency (Verma and Pearl, 1990;
Spirtes et al., 2001; Chickering, 2002; Tsamardinos et al.,
2006) or a functional assumption (Perry et al., 2022; Pe-
ters et al., 2016; Ghassami et al., 2017; Heinze-Deml et al.,
2018; Huang et al., 2020; Ghassami et al., 2018; Zeng et al.,
2021). A prominent representation of the equivalence class
is known as partial ancestral graphs (PAGs), and any causal
diagrams can be uniquely represented by a PAG (Richardson
and Spirtes, 2002; Zhang, 2006; 2008a;b; Ali, 2005).

Motivation and Contributions. With observational data,
we can only learn a PAG, which represents infinite causal
diagrams over supersets of the observed variables. There-
fore, considering each causal diagram consistent with the
PAG is computationally exhaustive. Identifying conditions
for MIS and POMIS at the level of ancestral graphs directly
would allow one to circumvent the issue. Recognizing the
gap between the theoretical advantages of SCM-MAB and
their practical applicability, we study SCM-MAB in terms
of ancestral graphs (i.e., MAGs and PAGs).

Our key contributions are: (1) We generalize MIS and de-
velop its graphical criteria in ancestral graphs, enabling an
agent to identify and exclude variables that have no effect
on the reward. (2) We devise POMIS for ancestral graphs
along with its graphical characterization, leading to an ac-
tion space that is worth exploring. (3) We present an efficient
algorithm to determine whether a given set can be a POMIS
in the Markov equivalence class represented by a PAG.

2. Preliminaries
We introduce notation and review relevant prior work. Fol-
lowing conventions, we use a capital letter, such as X , to
represent a variable, with its corresponding lowercase let-
ter, x, denoting a realization of the variable. Boldface is

employed to represent a set of variables or values, denoted
by X or x. The domain of X is indicated by XX . We use
calligraphic letters for graphs and models such as G and S .

Graphical notations. We consider a graph G having ver-
tices V and edges E composed of directed (→) and bidi-
rected edges (↔). If there is an edge between two vertices
X and Y in G, we say that the two vertices are adjacent in
G denoted by Y ∈ Adj(X)G or X ∈ Adj(Y )G . An ordered
sequence of distinct nodes in G is called a path between X
and Y in G if (1) the start node is X and the end node is Y ,
and (2) there is an edge between any two subsequent vari-
ables in the sequence. If a path consists of directed edges
with the same orientation, we say the path is directed. A
variable Z is called a collider on the path if the path contains
two edges having arrowheads toward Z. We define a path
as a collider path if all non-endpoint vertices along the path
are colliders. A path is uncovered (unshielded) if, for every
consecutive triple on the path, its endpoints are not adjacent.

A path is possibly directed from X to Y if there is no arrow-
head on the path pointing towards X . If there is a (possibly)
directed path from X to Y , then Y is called a (possible)
descendant of X , and X is a (possible) ancestor of Y . A
variable Y is referred to as a possible child of X , and X is
a possible parent of Y if they are adjacent and the edge is
not directed into X . We denote the ancestors, descendants,
parents, and children of a given variable as An, De, Pa, and
Ch, respectively. Ancestors and descendants include the
variable itself. For a set of variables, we define the ancestral
set as An(X)G =

⋃
X∈X An(X)G , and similarly for other

relationships. We add the prefix Poss when referring to
possible relationships, such as PossAn.

An inducing path relative to L is defined as a path where
every vertex not in L is a collider on the path, and every
collider is an ancestor of an endpoint of the path. A directed
edge X → Y is visible if there exists no causal diagram
in the corresponding equivalence class where there is an
inducing path between X and Y that is into X . We refer
to any edge that is not visible as invisible. The X-lower-
manipulation of G deletes all those visible edges and are out
of variables in X, and replaces all those edges that are out
of variables in X but are invisible in G with bidirected edges
denoted as GX. The X-upper-manipulation of G deletes all
those edges in G that are into variables in X denoted as GX.
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We denote the set of variables in G by V(G). A subgraph
G[V′], where V′ ⊆ V(G) is defined as a vertex-induced
subgraph in which all edges among the vertices in V′ are
preserved. We define G\X as G[V(G) \X] for X ⊆ V(G).

Structural Causal Model. We use structural causal model
(SCM) (Pearl, 2000) as the semantical framework to rep-
resent the underlying environment a decision maker is de-
ployed. An SCM S is a quadruple ⟨U,V,F,P (U)⟩, where
U is a set of exogenous variables determined by factors
outside the model following a joint distribution P (U), and
V is a set of endogenous variables whose values are deter-
mined following a collection of functions F = {fi}Vi∈V

such that Vi ← fi(pai,ui) where PAi ⊆ V \ {Vi} and
Ui ⊆ U. The observational probability P (v) is defined as∑

u

∏
Vi∈V P (vi | pai,ui)P (u). Every SCM S is associ-

ated with a causal diagram G = ⟨V,E⟩ where a directed
edge Vi → Vj ∈ E if Vi ∈ PAj , and a bidirected edge
between Vi and Vj if Ui and Uj are correlated. The prob-
ability of V = v when X is intervened upon to take the
value x is denoted by P (v \ x | do(x)).

Ancestral graphical structures. Ancestral graphs are de-
signed to capture graph structures without explicitly model-
ing latent variables. While directed edges between vertices
in a causal diagram imply a direct causal effect between
them, in ancestral graphs, directed edges instead represent
ancestral relationships. Similar to the absence of directed
cycles in causal diagrams, ancestral graphs do not permit al-
most directed cycle, which occurs when X ↔ Y is present
while X is an ancestor of Y .

A mixed graph is called a maximal ancestral graph (MAG)
if (i) it does not contain any directed or almost directed
cycles (i.e., ancestral); and (ii) there is no inducing path
between any two non-adjacent vertices (i.e., maximal). In
general, a MAG represents a set of causal diagrams with
the same set of observed variables that entail the same con-
ditional independence and ancestral relations among the
observed variables. For each causal diagram, there exists
a unique MAG over observed variables which represents
its marginal independence relations, as well as its ancestral
relations. However, a MAG is not fully testable with ob-
servational data since distinct MAGs can encode the same
marginal independence relations. To illustrate, consider the
causal diagrams G1 and G2 in Fig. 1. While they yield the
same conditional independence relations, they correspond
to distinct MAGs,M1 andM2, respectively.

A graph is a partial mixed graph (PMG) if it contains three
types of marks: tails (−), arrowheads (>), and circles (◦).
A circle mark implies an uncertain mark that can be either
an arrowhead or a tail. In addition, we use an asterisk (∗)
as a wildcard to denote any possible mark. In a PMG, if
every edge mark on a path consists of circles, the path is
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C

D

Y

B

A

(c) G{A,B,C}

Figure 2: MUCT (red) and IB (blue) on subgraphs.

called a circle path, and each edge is called a circle edge
( ◦−◦ ). An edge is a partially directed edge ( ◦→ ) if it
has both circle and arrowhead. A circle component is a
subgraph of a PMG in which every edge is a circle edge.
We use ? mark to emphasize a wildcard that represents
either a tail (−) or a circle (◦), but not an arrowhead (>).
Furthermore, [Q] denotes the set of MAGs represented by
the PMG Q, and similarly [M] denotes the set of causal
diagrams conforming to the MAGM.

A partial ancestral graph (PAG) denoted by P , is a PMG
such that it represents a Markov equivalence class of MAGs.
Every MAGM represented by a PAG has the same skeleton
as P , and the non-circle marks in P are identical to those in
M. Every circle in P corresponds to a variant mark among
the represented MAGs. The PAG P in Fig. 1e, for instance,
is a PAG, as it encodes every MAG obtained by orienting
circle marks incident to A and B as either > or −, including
both M1 and M2. In our work, we assume the absence
of selection bias; therefore, there is no undirected edge in
PAGs and MAGs we address.

Structural causal bandits. We follow the structural
causal bandit (SCM-MAB) problem (Lee and Bareinboim,
2018), where an SCM models the target system with which
an agent interacts, including a reward variable Y ∈ V and
XY ⊆ R. In the SCM-MAB setting, pulling each arm cor-
responds to intervening on a set of variables {x ∈ XX |
X ⊆ V \ {Y }}. The mean reward of an arm is denoted
by µx = E[Y | do(x)] and the best expected reward by
intervening on X is µx∗ = maxx∈XX

µx. We denote µ∗

as the optimal expected reward. The goal of the agent is
to minimize the cumulative regret after N rounds, which is
given by RegN =

∑
x∈XX,X⊆V\{Y } ∆xE[Tx(N)] where

Tx(N) denotes the number of times the arm x was played
after N rounds, ∆x = µ∗ − µx and XX =×X∈X

XX .

MIS and POMIS. We review the notion of minimal inter-
vention set (MIS) and possibly optimal minimal intervention
set (POMIS) as well as their graphical characterizations for
causal diagram by (Lee and Bareinboim, 2018; 2019). We
denote by x[W], values of x restricted to the subset of vari-
ables of W ∩X. We denote by MG,Y and PG,Y , the sets of
MISs and POMISs, respectively, given information [[G,Y ]].
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Definition 1 (MIS (Lee and Bareinboim, 2018)). Given
information [[G,Y ]], a set of variables X ⊆ V \ {Y } is
said to be a minimal intervention set (MIS) with respect to
[[G,Y ]] if there is no X′ ⊊ X such that µx[X′] = µx for
every SCM conforming to the causal diagram G.

MIS leverages Rule 3 of do-calculus (Pearl, 1995) to elimi-
nate variables that are irrelevant to the reward. Intuitively,
a MIS can be understood as a set X in which there exists a
directed path from any variable X ∈ X to Y , ensuring that
each X can influence Y . In this context, the authors demon-
strated that a set X is a MIS relative to [[G,Y ]] if and only if
X ⊆ An(Y )GX

. For instance, consider G in Fig. 2. {A,B}
is a MIS relative to [[G,Y ]] since {A,B} ⊆ An(Y )G{A,B}

holds. On the other hand, {A,B,C} is a not a MIS since A
is not an ancestor of Y in G{A,B,C}.

Definition 2 (POMIS (Lee and Bareinboim, 2018)). Let
X ⊆ V \ {Y } be a MIS with respect to [[G,Y ]]. If
there exists an SCM conforming to G such that µx∗ >
∀W∈MG,Y \{X}µw∗ , then X is a possibly-optimal minimal
intervention set (POMIS) with respect to [[G,Y ]].

If an agent is aware of POMIS, they should only explore
and exploit actions consistent with those sets. When given
a causal diagram G, minimal unobserved confounders’ ter-
ritory (MUCT; Def. 12) and interventional border (IB;
Def. 13) provide a graphical characterization of POMIS. In
words, MUCT is the minimal set of variables that is closed
under descendants and connected by a bidirected edge; and
IB consists of the parents of MUCT, excluding MUCT it-
self. Intuitively, MUCT is the minimal closed mechanism
that conveys all hidden information from unobserved con-
founders to the downstream reward, while IB consists of the
nodes that directly affect this closed mechanism.
Theorem 1 (Theorem 6 in Lee and Bareinboim (2018)). Let
G be a causal diagram over the set of variables V. Given
information [[G,Y ]], a set X ⊆ V \ {Y } is a POMIS if and
only if IB for GX with respect to Y equals X.

For instance, Fig. 2a shows MUCT (in red) and IB (in blue)
for the subgraphs G∅ and Fig. 2b shows G{A,B}. The do-
nothing action (do(∅)) is a non-POMIS, as the IB of G∅ is
{A,B} not ∅, while the set {A,B} is identified as a POMIS,
since the IB for G{A,B} is {A,B}.

In Appendix A, we provide detailed preliminaries for our
work, along with brief descriptions of related works.

3. Generalizing Minimal Intervention Sets
Our goal is to find all sets that do not include variables
irrelevant to the reward by ruling them out, referring to
MAGs or PAGs. To achieve this, we first generalize minimal
intervention set (MIS) to cover not only a causal diagram
but also a MAG or a PAG over V, denoted by D.

Definition 3 (minimal intervention set). Given information
[[D,Y ]], a set of variables X ⊆ V \ {Y } is called a minimal
intervention set (MIS) relative to [[D,Y ]] if there is no X′ ⊊
X such that µx[X′] = µx for every SCM conforming to D.

In the following parts, we provide complete graphical con-
ditions for MIS in terms of MAGs and PAGs. Surprisingly,
we then show in Sec. 3.2 that a MIS may include variables
irrelevant to reward when dealing with PAGs. To address
this issue, in Sec. 3.3, we propose the concept of definitely
minimal intervention set (DMIS), which ensures that no
further variables can be pruned from the set.

3.1. MIS for MAGs

We begin by examining whether MIS for MAGs is complete
in encompassing all sets that have been fully trimmed.

Proposition 1. LetM be a MAG over the set of variables
V. A set X ⊆ V \ {Y } is a MIS relative to [[M,Y ]] if and
only if there exists a causal diagram G conforming toM
such that X is a MIS relative to [[G,Y ]].

We provide all the proofs in Appendix E along with auxil-
iary results in Appendix D. The proposition guarantees the
existence of a causal diagram G where X is a MIS relative
to [[G,Y ]], provided that X is a MIS relative to [[M,Y ]] for
the given MAGM.

We now proceed to the graphical characterization of MIS
for MAGs, in a manner similar to causal diagrams, utilizing
the explicit ancestral relations among variables in MAGs
and Rule 3 of do-calculus for MAGs (Zhang, 2008b).

Theorem 2. LetM be a MAG over the set of variables V.
Given information [[M,Y ]], a set X ⊆ V \ {Y } is a MIS
relative to [[M,Y ]] if and only if X ⊆ An(Y )MX

holds.

For example, consider G′ andM in Figs. 3a and 3b where
G′ ∈ [M]. A set {A,B,C} is a MIS relative to [[M,Y ]]
since {A,B,C} ⊆ An(Y )M{A,B,C}

holds.

Remark 1. Even though a set X is a MIS with respect to
[[M,Y ]], there is no guarantee that X is a MIS with respect
to [[G,Y ]] for every causal diagram G conforming toM.

The set {A,B,C} is also a MIS relative to [[G′,Y ]] in Fig. 3a
since {A,B,C} ⊆ An(Y )G′

{A,B,C}
holds. However, while

G in Fig. 2a is also represented byM, it is not a MIS with
respect to [[G,Y ]].1

3.2. MIS for PAGs and Its Possible Vacuousness

We proceed to the characterization of MIS for PAGs. Un-
fortunately, we cannot rely on Rule 3 for PAGs (Thm. 6
in Appendix) because the rule is applied when ancestral

1The inducing path A→ C ↔ Y in G appears as A→ Y in
M since C is an ancestor of Y in G.
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Figure 3: (a) The bold edge A → Y in G′ represents an
added edge from G in Fig. 2a. (b) MAG representing both
G′ and G. (c) Induced graph ofM.

relations are apparent for all represented models, whereas
a PAG might involve uncertainty reflected by circle marks.
Hence, we define a specific type of path: A proper possibly-
directed path from X ∈ X to Y with respect to X, where
only the first node X is in X. This path is not disturbed by
other intervening variables, thus aligning with the character-
izations of MISs for causal diagrams and MAGs.

Proposition 2. Let P be a PAG over the set of variables
V. A set X ⊆ V \ {Y } is a MIS relative to [[P,Y ]] if and
only if, for every variable X ∈ X, there exists a proper
possibly-directed path from X to Y with respect to X in P .

One might expect that if X is a MIS relative to [[P,Y ]], then
it would also be a MIS relative to [[M,Y ]] for some MAG
M conforming to the PAG P . However, this is not always
the case and no SCM associates X as MIS with respect to
[[M,Y ]] as shown in the following example.

Consider a PAG P in Fig. 4. A set {A,B} is a MIS with
respect to [[P,Y ]] since each A and B has proper possibly-
directed paths to Y (i.e., A ◦−◦ Y and B ◦−◦ Y , respec-
tively). However, we will demonstrate that at least one of
A or B is irrelevant to reward in every conforming MAG.
We consider two SCMs where the domains of variables are
binary and ∀UV ∈{UA,UY ,UB}P (UV = 1) = ϵ ≈ 0. For
a proper subset X′ = {A}, we can construct an SCM S1
following that the mechanism for Y in S1 is fY = b⊕ uY ,
and the mechanism for B is fB = uB where ⊕ denotes
the exclusive-or function. Then, µa = µ∅ = 2ϵ(1 − ϵ)
while µa,b∗ = µb∗ = 1 − ϵ with b∗ = 1. Thus, we find
that µa,b∗ > µa holds in S1. This construction can be done
for each proper subset of {A,B}, validating {A,B} is a
MIS relative to [[P,Y ]]. However, the remarkable point
here is that there is no representative SCM S∗ that satisfies
µx[X′] ̸= µx for arbitrary proper subset X′ ⊊ X, as doing
so would require the mechanism fy to depend on the values
of both A and B. This setup would introduce an uncovered
collider at Y in the underlying graph of P , which is not
consistent with the structure of P . Therefore, we observed
that {A,B} is a MIS with respect to [[P,Y ]], but at least one
of A or B is irrelevant to reward in all conforming MAGs.

A

Y

B

(a) P
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Y

B

v

(b)M1

A

Y

B

v

(c)M2
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Y
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Figure 4: M1 andM2 are represented by P . In contrast,
M3 is not represented by P .

3.3. Definitely MIS and Its Characterization

To address this vacuousness, we propose the concept of
definitely MIS, which ensures the existence of a MAG where
a set that is MIS in a PAG remains MIS. With the definition
of MIS, we first choose X′ ⊊ X, and then check whether
µx[X′] ̸= µx holds across all SCMs conforming to D; here,
we first choose an SCM S∗ conforming toD, and then check
whether the inequality holds across all subsets X′.

Definition 4 (definitely minimal intervention set). Given
information [[D,Y ]], a set X ⊆ V\{Y } is called a definitely
minimal intervention set (DMIS) relative to [[D,Y ]], denoted
by DD,Y if there exists an SCM compatible with D such
that, for every proper subset X′ ⊊ X, µx[X′] ̸= µx holds.

We now relate characterizations for MIS and DMIS.

Proposition 3. If a set X is a DMIS with respect to [[D,Y ]],
then X is a MIS with respect to [[D,Y ]].

Proof. To see this, let S∗ be an SCM associated with D
such that µx[X′] ̸= µx holds for every X′ ⊊ X. Since such
an S∗ ensures that µx[X′] ̸= µx for all proper subsets, it
guarantees that X satisfies the definition of a MIS relative
to [[D,Y ]].

Proposition 4. Let D be either a causal diagram or a MAG.
If a set X is a MIS with respect to [[D,Y ]], then X is a DMIS
with respect to [[D,Y ]].

proof sketch. To derive a contradiction, we can construct an
SCM S∗ where all mechanisms consist of the sum of the
values of their parents, which ensures that X is a DMIS.

This equivalence between MIS and DMIS for a causal dia-
gram or a MAG (Props. 3 and 4) is derived from determinis-
tic ancestral relations, X ⊆ An(Y )DX

. We now move on to
discuss DMIS for PAGs, where ancestral relations are not
deterministic. Recall that {A,B} is a MIS but not a DMIS
with respect to [[P,Y ]], as illustrated in Fig. 4a.

Proposition 5. Let P be a PAG over the set of variables V.
A set X ⊆ V \ {Y } is in DP,Y if and only if there exists a
MAGM conforming to P such that X ∈MM,Y .

Hence, DMIS provides a truly feasible space for actions
associated with intervention sets that no longer contain vari-
ables to rule out. According to Props. 3 and 4, we focus
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Figure 5: The nodes in the light blue region are the ancestors
of Y . The three MAGs are represented by the PAG P .

only on establishing the graphical criterion for DMIS only
for PAGs. In Fig. 4a, we have observed that A ◦−◦Y and
B ◦−◦Y cannot both be an ancestor of Y at the same time
due to the uncovered path A◦−◦Y ◦−◦B. To this end, we
devise the notion of relevance among the edges in a PAG.

Definition 5 (relevant edges). Let P be a PAG. For any
edges e1(V1 ∗−∗ V2) and e2(Vn−1 ∗−∗ Vn), we say that
e1 is relevant to e2 in P if there exists an uncovered path
V1 ∗−◦V2 ◦−◦· · ·◦−◦Vn−1 ◦−∗Vn with n ≥ 3 in P .

Consider the one shown in Fig. 5. Similarly, A◦−◦C and
D◦−◦Y are relevant in P because of the path A◦−◦C ◦−◦
Y ◦−◦D. The key point here is that all triplets along the
path are definite non-colliders so that the end nodes cannot
be simultaneously ancestors of non-end nodes.

Theorem 3. Let P be a PAG over the set of variables V. A
set X ⊆ V \ {Y } is a DMIS relative to [[P,Y ]] if and only
if, for any pair of vertices X,Z ∈ X, there exist uncovered
proper possibly-directed paths from X and Z to Y with
respect to X such that their starting edges are not relevant.

We now revisit Fig. 5 for example. Consider any MAGs
represented by P where A ◦−◦ C appears as a directed
edge out of A (e.g.,M1 andM2). Clearly, this results in
C → Y → D, as the path is of definite status. On the
other hand, if any MAG contains D → Y , this leads to
Y → C → A, as in M3. The important observation is
that A → C ensures D /∈ An(Y )M, and D → Y ensures
A /∈ An(Y )M for all MAGs M represented by P . This
indicates that A and D cannot simultaneously be ancestors
of Y inM, thus {A,D} is not a DMIS relative to [[P,Y ]].

4. Possibly Optimal Minimal Intervention Sets
We investigate into the graphical and algorithmic charac-
terization of POMISs for MAGs and PAGs. POMISs are
sets that include possibly optimal actions corresponding to
interventions on specific values within the domains of the
POMIS, implying that intervening on any set that is not a
POMIS cannot yield a better outcome.

The main challenge in characterizing POMIS for ancestral
graphs lies in the fact that induced paths by latent variables

(or UCs) do not explicitly appear, which makes it impossible
to directly identify the unobserved confounders’ territory
(Def. 12) as for causal diagrams. Instead, we leverage edge’s
visibility which indicates that the edge is not confounded
in any underlying causal diagram (see Lem. 2 in Appendix
for details). To generalize the UC-territory, we introduce a
possible c-component (Jaber et al., 2018), which provides
a necessary condition for nodes to belong to the same c-
component in an underlying causal diagram.

Definition 6 (pc-component). Two nodes are in the same
possible c-component (pc-component) if there is a path
between them such that (i) all non-endpoint nodes along the
path are colliders, and (ii) none of the edges are visible.

We denote the pc-component of a PMG Q containing X as
PC(X)Q and PC(X)Q ≜

⋃
X∈X PC(X)Q. For example,

A and B are in the same pc-component in P of Fig. 1e be-
cause they are connected through an invisible colliding path
A ◦→ C ←◦B, i.e. PC(A)P = {A,B,C}. Furthermore,
due to A /∈ PC(Y )P = {B,Y }, A and Y cannot belong to
the same c-component in any causal diagrams conforming
to P . We now generalize MUCT and IB for PMGs.

Definition 7 (unobserved-confounders’ territory for PMGs).
Given information [[Q,Y ]] and intervention set X ⊆ V \
{Y }, let H = Q[PossAn(Y )Q \ X]. A set of variables
T ⊆ PossAn(Y )Q \ X containing Y is called an UC-
territory on Q with respect to Y if PossDe(T)H = T and
PC(T)H = T. A UC-territory T is called a minimal UC-
territory (MUCT) if no T′ ⊊ T is a UC-territory, denoted
as MUCT(Q,Y ,X).

Definition 8 (interventional border for PMGs). Let T be
a minimal UC-territory with respect to [[Q,Y ,X]]. Then
W = Pa(T)Q \T is called an interventional border (IB)
with respect to [[Q,Y ,X]], denoted as IB(Q,Y ,X).

For concreteness, considerM and X = {A,B} in Fig. 3.
Here, we omit Poss, as we discuss in the context of a MAG.
LetH be the induced graphM[An(Y )M \X]. InH, C and
Y are in the same pc component and D is a descendant of
C. This implies that T = {C,D,Y } is the minimal closed
set for DeH and PCH, leading to IB(M,Y ,X) = {A,B},
derived from Pa(T)M \T.

4.1. POMIS for MAGs

We first establish a connection between a causal diagram
and a MAG with respect to POMIS.

Proposition 6. LetM be a MAG over the set of variables
V. A set X ⊆ V \ {Y } is a POMIS relative to [[M,Y ]] if
and only if there exists a causal diagram G conforming to
M such that X is a POMIS relative to [[G,Y ]].

Given the existence of an environment represented by the
MAG in which the optimal action is an instance of a POMIS,
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POMISs for a MAG are indeed worth exploring. Equipped
with the generalized MUCT and IB in the context of PMG,
we proceed to characterize POMISs for MAGs.

Theorem 4. LetM be a MAG over the set of variable V.
A set X ⊆ V \ {Y } is a POMIS relative to [[M,Y ]] if and
only if X = IB(M,Y ,X).

For example, see Fig. 3c where IB(M,Y ,X) = X holds
for X = {A,B}. Therefore, we get that {A,B} is a POMIS
with respect to [[M,Y ]], which is consistent with G in Fig. 2
where {A,B} is a POMIS with respect to [[G,Y ]].

4.2. POMIS for PAGs

To begin with, we refine the possibly-optimal minimal inter-
vention set over DMISs rather than MISs. This refinement
ensures the existence of an underlying SCM represented by
the PAG and implies the following proposition holds. Note
that the refined POMIS aligns with established studies and
serves as a natural extension, as discussed in Props. 3 and 4.

Definition 9 (possibly-optimal minimal intervention set).
Let X ⊆ V \ {Y } be a DMIS relative to [[D,Y ]]. If
there exists an SCM conforming to D such that µx∗ >
∀W∈DD,Y \{X}µw∗ , then X is a possibly-optimal minimal
intervention set (POMIS) relative to [[D,Y ]].

Proposition 7. Let P be a PAG over the set of variables V.
A set X ⊆ V \ {Y } is a POMIS relative to [[P,Y ]] if and
only if there exists a MAGM conforming to P such that X
is a POMIS relative to [[M,Y ]].

The remainder of the main body focuses on characterizing
POMIS for PAGs. A single PAG alone is insufficient to fully
characterize POMIS due to significant structural uncertainty
in circle marks. Since DMIS is already fully characterized,
our strategy leverages this fact by incorporating the infor-
mation that X is a DMIS into the PAG when X is a DMIS
with respect to [[P,Y ]].

We first present necessary conditions for a PMG to represent
MAGsM in which X is a MIS relative to [[M,Y ]].

Proposition 8. Let QX be a PMG representing MAGs
where X is a MIS with respect to Y . Then, the following
properties hold in QX, for X ∈ X:

1. Every uncovered proper possibly-directed path from
X to Y relative to X ends with an arrowhead (>).

2. If X is adjacent to Y , then the edge between X and
Y is a directed edge.

Recall the PAG P in Fig. 5a and X = {C}, a DMIS relative
to [[P,Y ]]. Here, every MAGM∈ [P], satisfying that {C}
is a MIS relative to [[M,Y ]], conforms to Q{C} in Fig. 6a.

Let Q∗
X be a PMG that satisfies the two conditions in

Prop. 8, and the orientation completeness.2 To charac-
terize POMIS for PAGs, we partition [Q∗

X] based on the
orientation of circle marks incident on X ∪ {Y }. We re-
fer to a local transformation (Wang et al., 2023b) CQ

A ⊆
{V ∈ Adj(A)Q | A ◦−∗ V } as the vertices whose edges
with a circle at A (i.e., A ◦−∗ V ) will be oriented with
arrowheads at A (i.e., A ←∗ V ). The remaining vertices
V ∈ {V ∈ Adj(A)Q | A ◦−∗ V } \ CQ

A will be oriented
as A −∗ V . For clarity, consider Fig. 6 where all MAGs
M ∈ [P] that have {C} as MIS relative to [[M,Y ]] are
represented by Q∗

{C}, which satisfies the orientation com-
pleteness. Each Q1

{C} and Q2
{C} illustrates a PMG where

local transformations for C and Y are oriented, and both
graphs are closed under the orientation rules.

Proposition 9. Let Q∗
X be a PMG which satisfies the con-

ditions in Prop. 8 and the orientation completeness. For
every MAGM ∈ [Q∗

X], if X is a MIS relative to [[M,Y ]],
then there exists a PMG Qi

X representingM such that the
following conditions are satisfied:

1. Every circle mark around nodes X ∪ {Y } in QX is
oriented as either a tail (−) or an arrowhead (>) in
Qi

X according to valid local transformations. 3

2. Every X ∈ X is an ancestor of Y in Qi
X.

3. Qi
X is closed under orientation rules.4

In words,Qi
X is a more oriented PMG instance derived from

QX by applying the valid local transformations for circle
marks around X ∪ {Y }, along with the orientation rules.
Furthermore, each Qi

X confirms that X is a MIS relative to
[[M,Y ]] for all MAGsM∈ [Qi

X].

2All circle marks are variant across the MAGs within [Q∗
{C}].

3For example, C
Q{A}
Y = {B} with C

Q{A}
B = {C,Y } is in-

valid, as it implies B ↔ Y which introduces an almost directed
cycle. In contrast, C

Q{A}
Y ={B} with C

Q{A}
B ={C} is valid, as

depicted in Fig. 6b.
4The orientation rules refer toR1−R3,R′

4,R8−R10 andRSB.
R5−R7 are not considered since we assume no selection bias.
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Algorithm 1 Identify whether a DMIS X is a POMIS for PAG.
function IsPOMIS(P , Y , X)
Input: P: PAG, Y : reward, X: DMIS

1 LetQX be a PMG oriented from P with X according to Prop. 8.
2 return subIsPOMIS(QX,X ∪ {Y },Y ,X)

3 function subIsPOMIS(Q,A,Y ,X)
4 if A is empty then
5 return IB(Q,Y ,X) = X

6 A← Pick a node from A.
7 for each set CQ

A ⊆ {V ∈ Adj(A)Q | A◦−∗V } do
8 if CQ

A satisfies Thm. 7 and Y ∈ PossDe(A)Q\CQ
A

then
9 Let Q′ be the PMG obtained by orienting the circle

marks around A following CQ
A and completing the

orientation rules fromQ.
10 if subIsPOMIS(Q′,A \ {A},Y ,X) then
11 return True
12 return False

We present an algorithm IsPOMIS, through which we can
determine whether a given DMIS X is a POMIS relative to
[[P,Y ]] based on our theoretical results Props. 8 and 9.

Theorem 5 (soundness and completeness). IsPOMIS re-
turns True if and only if there exists a causal diagram G
conforming to P such that X is a POMIS relative to [[G,Y ]].

The algorithm begins by infusing the necessary condition for
X to be a DMIS (Line 1). Then, the local transformations
at X ∪ {Y } are oriented recursively within subIsPOMIS.
During each recursion, it evaluates the validity of a local
transformation around a vertex and the ancestral relations
between the vertex and the reward (Line 8), supported by
Thm. 7 and lem. 22, respectively. The PMG updated ac-
cording to the local transformation and the orientation rules
proceeds to next recursive call (Lines 9–11). Finally, in the
base case (Lines 4–5), we check whether the fully oriented
PMG Qi

X satisfies IB(Qi
X,Y ,X) = X. The key observa-

tion is that local transformations limited to X ∪ {Y } are
sufficient for this determination, thereby circumventing the
need to enumerate all MAGs represented by the target PAG.
To witness, consider Q1

{C} with X = {C} in Fig. 6b where

S1 S2

TS
POMIS 123.39 ± 52.18 80.31 ± 43.60
DMIS 144.84± 51.90 118.64 ± 44.73
BF 313.97± 54.08 246.70 ± 46.09

KL-UCB
POMIS 243.41 ± 55.49 172.86 ± 45.26
DMIS 275.87± 54.90 253.81 ± 47.66
BF 497.90± 55.64 453.40 ± 48.69

Table 1: Mean and standard deviation of cumulative regret.

IB(Q1
{C},Y ,X) = X holds, and it follows that {C} is a

POMIS with respect to [[P,Y ]]. Indeed, we can find a MAG
M by orienting the circle marks around B in Q1

{C} as tails,
in which IB(M,Y ,X) = X also holds.

5. Experiments
We evaluate the cumulative regrets of SCM-MAB algorithm
under different strategies to assess the effect of employing
POMIS. In our setting, the deployed agent can only ac-
cess the PAG P in Fig. 5a to obtain DMISs and POMISs.
We consider three strategies for selecting arms: POMISs,
DMISs, and Brute-force, combined with two prominent
solvers: Thompson Sampling (TS) and Kullback-Leibler
Upper Confidence Bound (KL-UCB). In the Brute-force
strategy, all combinations of arms

⋃
X⊆V\{Y } XX are eval-

uated. The environment in which an agent interacts is con-
sistent with one of the causal diagrams G1 and G2.

Let us focus on an experiment comprising KL-UCB and S2
as a representative example. At the end of the trials, each of
the three strategies–Brute-force (BF), DMIS and POMIS–
yields cumulative regrets (mean ± standard deviation) of
453.40± 48.69, 253.81± 47.66, and 172.86± 45.26, re-
spectively. The superiority of POMIS remains consistent
across both S1 and S2, regardless of the solvers used. These
results show that refining arms by taking the Markov equiv-
alence class into account enhances the efficiency of agents.
We provide detailed experimental settings along with addi-
tional experiments and discussions in Appendices B and C.
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6. Conclusion
We proposed a novel structured causal bandit strategy in the
context of ancestral graphs to prevent an agent from consid-
ering the infinite number of underlying causal diagrams. We
believe these results have practical implications for design-
ing intelligent agents, providing a foundation for optimizing
the action space when the environment is abstracted as a
Markov equivalence class.
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Structural Causal Bandits under Markov Equivalence

A. Additional Preliminaries and Background Results
In this section, we provide additional preliminaries from previous works (A.1), assumptions of our work (A.2), and related
works relevant to our study (A.3).

A.1. Additional Preliminaries

Definite status. Let p be any path in a PMG, and ⟨X,Z,Y ⟩ be any consecutive triple along p. Z is a definite collider on p
if both edges are directed into Z. If one of the edges is out of Z, or both edges have a circle mark at Z (i.e., X ∗−◦Z ◦−∗Y )
and there is no edge between X and Z, then we say that the Z is a definite non-collider on p. A path is said to have a definite
status if every non-endpoint node along it is either a definite collider or a definite non-collider.

Markov Equivalence Class. Multiple MAGs can entail the same m-separation5 relationships. Such MAGs constitute a
Markov equivalence class (MEC). The Markov equivalence class of MAGs can be uniquely represented by a PMG which
we refer to as a PAG.

Definition 10 (Markov equivalence (Zhang, 2012)). Two MAGsM1,M2 with V(M1) = V(M2) are Markov equivalent
if for any three disjoint sets of vertices X,Y,Z, X and Y are m-separated by Z in M1 if and only if X and Y are
m-separated by Z inM2.

A path between X and Y , p = ⟨X, · · · ,W ,Z,Y ⟩, is a discriminating path for Z if (i) p includes at least three edges; (ii) Z
is a non-endpoint vertex on p, and is adjacent to Y on p; and (iii) X is not adjacent to Y , and every vertex between X and Z
is a collider on p and is a parent of Y .

For two MAGs to be in the same Markov equivalence class, discriminating paths must either be present in both graphs or
none of the graphs, as well as the same skeleton and unobserved colliders.

Lemma 1 (graphical characterization of MEC (Spirtes and Richardson, 1997; Zhang, 2012)). Two MAGsM1 andM2 with
V(M1) = V(M2) are Markov equivalent if and only if

(i) they have the same adjacencies;

(ii) they have the same uncovered colliders; and

(iii) if some path is a discriminating path for a vertex V in both graphsM1 andM2, then V is a collider on the path in
M1 if and only if it is a collider on the path inM2.

A collider path ⟨V1, · · · ,Vk⟩ is called a minimal collider path if V1 is not adjacent to Vk, and no subsequence of the path is
also a collider path.

The two conditions (ii) and (iii) can be expressed as a condition for two MAGs to share the same minimal colliding paths
(Zhao et al., 2005). Identifying Markov equivalence of a pair of MAGs is tractable with worst-case runtime O(|V|3)
(Wienöbst et al., 2022).

Visible edges. A directed edge X → Y is visible if there exists no causal diagram in the corresponding equivalence class
where there is an inducing path between X and Y that is into X . We refer to any edge that is not visible as invisible.

Lemma 2 (graphical characterization of visibility (Zhang, 2006; Maathuis and Colombo, 2015)). A directed edge X → Y
is visible if

(i) there is a vertex Z not adjacent to Y , such that there is an edge between Z and X that is into X (Z ∗→ X); or

(ii) there is a collider path between Z and X that is into X (Z ∗→ · ↔ · · · ↔ X) and every vertex on the path except Z
is a parent of Y .

It is important to note that (i) an invisible edge X → Y does not necessarily imply that X and Y are confounded in every
underlying causal graph; and (ii) invisible edges should not be considered independently. To witness, consider a scenario

5M-separation (Richardson and Spirtes, 2002) refers to an extension of d-separation (Pearl and Robins, 1995) for ancestral graphs.
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Figure 8: (a) PAG P , (b) {C}-upper-manipulated graph, and (c) induced graph over V(P) \ {C}. In MAGs and PAGs,
the visibility is preserved from P (see Lem. 15). For example, although there is no edge oriented into D in P \ {C}, the
directed edge D → Y remains visible.

where we have X ← Y → Z in a MAGM, and X and Z are not adjacent. Since both edges, X ← Y and Y → Z, are
invisible, causal diagrams can include at most one of the following structures added toM: X ← L1 ← · · · → Ln → Y or
Y ← L1 ← · · · → Ln → Z (X ↔ Y , or Y ↔ Z). Adding any one of these does not introduce a new collider between X
and Z, thereby maintaining conformity withM. However, if both are added simultaneously, a new collider is introduced at
Y , resulting in a causal diagram that is not represented byM.

Manipulations. Given a causal diagram G and a set of variables X therein, the X-lower-manipulation of G deletes all
edges in G that are out of the variables in X. The resulting graph is denoted by GX. The X-upper-manipulation of G deletes
all edges in G that are into variables in X. The resulting graph is denoted by GX.

Given a PMG Q and a set of variables X therein, the X-lower-manipulation of Q deletes all those edges that are visible
in Q and are out of variables in X and replaces all those edges that are out of variables in X but are invisible in Q with
bidirected edges. The resulting graph is denoted as QX. The X-upper-manipulation of Q deletes all edges in Q that are into
variables in X, and otherwise keeps Q as it is.

The manipulated graphs play a crucial role in the derivation of do-calculus.

Do-calculus. Pearl (1995) devised do-calculus which acts as a bridge between observational and interventional distributions
from a causal diagram without relying on any parametric assumptions. Zhang (2008b) proposed the do-calculus for MAGs
and PAGs (also known as Zhang’s calculus). Jaber et al. (2022) noted that there are cases where Pearl’s do-calculus rules are
applicable to every causal diagram within a given PAG, but Zhang’s calculus cannot be applied to the same PAG. To address
this, Jaber et al. (2022) proposed a refined version of do-calculus for PAGs and demonstrated that whenever the proposed
rule is not applicable given a PAG, then the corresponding rule in Pearl’s calculus is not applicable for some causal diagram
in the Markov equivalence class represented by the PAG.

Here, we present do-calculus for PAGs, which encompasses that for MAGs.

Definition 11 (definite m-connecting path (Jaber et al., 2022)). In a PAG, a path p between X and Y is a definite m-
connecting path relative to a set of nodes Z if p is definite status, every definite non-collider on p is not a member of Z, and
every collider on p is a ancestor of some member of Z. X and Y are m-separated by Z if there is no definite m-connecting
path between them relative to Z.

Theorem 6 (do-calculus for PAGs (Jaber et al., 2022)). Let P be the PAG over V, and X, Y, W, Z be disjoint subsets of
V. The following rules are valid, in the sense that if the antecedent of the rule holds, then the consequent holds in every
MAG and consequently every causal diagrams represented by P .

Rule 1. P (y | do(w),x, z) = P (y | do(w), z) if X and Y are m-separated by W ∪ Z in PW

Rule 2. P (y | do(w), do(x), z) = P (y | do(w),x, z) if X and Y are m-separated by W ∪ Z in PW,X

Rule 3. P (y | do(w), do(x), z) = P (y | do(w), z) if X and Y are m-separated by W ∪ Z in P
W,X(Z)

where X(Z) ≜ X \ PossAn(Z)P[V\W].
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Induced graph. A subgraph Q[A] is defined as a vertex-induced subgraph in which all the edges among the vertices in
A ⊆ V(Q) are preserved while maintaining the visibility from Q (see Fig. 8).

Chordal graph. We also introduce some useful graph theory and terminology, excerpted from Maathuis et al. (2009);
Wang et al. (2023a). A graph is chordal if any cycle of length four or more has a chord, which refers to an edge joining
two vertices that are not adjacent in the cycle. If a graph G = ⟨V,E⟩ is chordal, then its subgraphs are also chordal. A
vertex Z in V is called simplicial if G[Adj(Z)G ] induces a complete graph. As shown by Dirac (1961); Golumbic (2004),
there are at least two non-adjacent simplicial vertices in any non-complete chordal graph with more than one vertex. A
perfect elimination order of a graph G is an ordering σ = (V1, · · · ,V|V|) of its vertices, so that each vertex Vi is a simplicial
vertex in the subgraph G \ {V1, · · · ,Vi−1}. It is always possible to transform any circle component in a PAG into a directed
acyclic graph (DAG) without introducing new unshielded colliders, as the circle component is chordal and every chordal
graph has a perfect elimination order (Rose et al., 1976; Habib et al., 2000).

Orientation rules. Fast Causal Inference (FCI) is a causal discovery algorithm for identifying PAGs from conditional
independence relationships derived from an observable distribution that follows underlying model. We present the complete
orientation rules proposed by Zhang (2008a), omitting rulesR5–R7 due to the absence of selection bias.

R0 For each uncovered triple ⟨X,Z,Y ⟩ in P , orient it as a collider X ∗→ Z ←∗ Y if and only if Z is not in
Sepset(X,Y )6.

R1 If X ∗→ Z ◦−∗Y , and X and Y are not adjacent, then orient Z ◦−∗Y as Z → Y .

R2 If X → Z ∗→ Y or X ∗→ Z → Y , and X ∗−◦Y , then orient X ∗−◦Y as X ∗→ Y .

R3 If X ∗→ Z ←∗Y , X ∗−◦W ◦−∗Y , X and Y are not adjacent, and W ∗−◦Z, then orient W ∗−◦Z as W ∗→ Z.

R4 If ⟨X, · · · ,W ,Z,Y ⟩ is a discriminating path between X and Y for Z, and Z ◦−∗Y ; then if Z ∈ Sepset(X,Y ),
orient Z ◦−∗Y as Z → Y ; Otherwise orient the triple ⟨W ,Z,Y ⟩ as W ↔ Z ↔ Y .

R8 If X → Z → Y , and X ◦→ Y , orient X ◦→ Y as X → Y .

R9 If X ◦→ Y , and p = ⟨X,Z,W , · · · ,Y ⟩ is an uncovered possibly directed path from X to Y such that Z and Y
are not adjacent, then orient X ◦→ Y as X → Y .

R10 Suppose X ◦→ Y , Z → Y ←W , p1 is an uncovered possibly directed path from X to Z, and p2 is an uncovered
possibly directed path from X to W . Let U be the vertex adjacent to X on p1 (U could be Z), and V be the vertex
adjacent to X on p2 (V could be W ). If U and V are distinct, and not adjacent, then orient X ◦→ Y as X → Y .

Incorporating background knowledge. Andrews et al. (2020) demonstrated that the ten rulesR1−R10 are complete for
incorporating tiered background knowledge, which refers to background knowledge where the variables in a PAG can be
partitioned into distinct groups with an explicit causal order defined among them.

Wang et al. (2022; 2023b) proposed that the rulesR1−R3,R′
4,R8−R10 andRSB are complete for orienting a PAG when

local background knowledge (i.e., all marks around a vertex) is available. The second additional ruleRSB naturally follows
from the absence of selection bias.7

R′
4 If ⟨X, · · · ,W ,Z,Y ⟩ is a discriminating path between X and Y for Z, and Z ◦−∗ Y ; then orient Z ◦−∗ Y as
Z → Y .

RSB If X −◦Y , then orient X −◦Y as X → Y .

Furthermore, they built the necessary and sufficient conditions for validating local background knowledge (referred to here
as local transformation in the context of our paper), which can be determined in O(|V|3).

6A set Z ∈ Sepset(X,Y ) if X and Y are independent given Z.
7Wang et al. (2024a) proved that rules R1-R10 with one additional rule are sound and complete to incorporate local background

knowledge to scenarios where selection bias is present.
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Theorem 7 (Theorem 3 in Wang et al. (2023b)). DenoteQ the obtained PMG after some valid local transformations from a
PAG P with orientation rulesR1−R3,R′

4,R8−R10 andRSB. Given a set CQ
X ⊆ {V ∈ Adj(X)Q | X ◦−∗V }, there exists

a MAGM consistent to Q with X ←∗V for all V ∈ CQ
X , and X → V for all V ∈ {V ∈ Adj(X)Q | X ◦−∗V } \CQ

X if
and only if CQ

X satisfies the following conditions:

1. PossDe(X)Q\CQ
X
∩ Pa(CQ

X)Q = ∅;

2. Q[CQ
X ] is a complete graph;

3. Orient the subgraph Q[PossDe(X)Q\CQ
X
] as follows until no feasible updates:

For any vertices Vl and Vj such that Vl ◦−◦Vj , orient it as Vl ◦→ Vj if

(i) FVl
\ FVj

̸= ∅, or;
(ii) FVl

= FVj
as well as there is a vertex Vm ∈ PossDe(X)Q\CQ

X
not adjacent to Vj such that Vm → Vl ◦−◦Vj

where FVl
= {V ∈ CQ

X ∪ {X} | V ∗−◦Vl ∈ Q}. Then, no new uncovered colliders are introduced.

The PMG incorporating local transformations satisfies desirable properties as follows.

Theorem 8 (Theorem 1 in Wang et al. (2023b)). Let Q be a PMG obtained from some valid local transformations from a
PAG P and orientation rulesR1−R3,R′

4,R8−R10 andRSB. Then Q satisfies the following properties.

(Closed). Q is closed under the orientation rules.

(Invariant). The arrowheads (>) and tails (-) in Q are invariant in all the MAGs consistent with Q.

(Chordal). The circle component in Q is chordal.

(Balanced). For any three nodes A,B,C in Q, if A∗→ B ◦−∗C, then there is an edge between A and C with an
arrowhead at C, namely, A∗→ C. Furthermore, if the edge between A and B is A→ B, then the edge between A
and C is either A→ C or A◦→ C (i.e., it is not A↔ C).

(Complete). For each circle at vertex A on any edge A◦−∗B inQ, there exist MAGsM1 andM2 consistent withQ
such that A←∗B inM1 and A→ B inM2.

Recently, Venkateswaran and Perković (2024); Wang et al. (2024b) devised additional rules for more general type of
background knowledge. However, the completeness of the orientations in the resulting PMG after applying these rules
remains an open problem.8

R̃4 If ⟨X = V0,V1, · · · ,Vk,Vk+1 = Y ⟩ with k ≥ 2 is an almost discriminating path9 for Vk in the graph and if
Vk ◦−∗Y is in the graph, then orient Vk ◦−∗Y as Vk → Y .

R11 If W ∗−∗X ∗→ Y → Z ∗−◦W and W ◦−◦Y , then orient W ◦−∗Z as W → Z.

R12 If there is an unshielded path of the form V1 ◦−◦ V2 ◦−◦ · · · ◦−◦ Vn−1 ◦−∗ Vn with i > 2, as well as a path
Vn → Vn+1 ↔ V1, then orient V1 ◦−◦V2 as V1 ←◦V2.

R13 Let W ,X,Y ,Z and V1, · · · ,Vk with k > 1 be distinct nodes. If W ◦−∗X , Y ↔ W ↔ Z, and uncovered path
Y ←◦V1 ◦−◦· · ·◦−◦Vk ◦→ Z are in the graph, and if there are uncovered possibly directed paths ⟨W ,X, · · · ,Vi⟩
in the graph, for all i ∈ {1, · · · , k}, then orient W ◦−∗X as W ←∗X .

Wang et al. (2023a) leveraged the PMG incorporating local background knowledge to determine whether a given set of
variables can be an adjustment set in some MAG consistent with the PMG, and Wang et al. (2024b) demonstrated that the
additional rules can improve this process.

8The rules follow the version in Venkateswaran and Perković (2024).
9For more details on the concept of an almost discriminating path, we refer readers to Venkateswaran and Perković (2024).
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Soundness and completeness of orientations. To eliminate ambiguity, we provide a formal description of soundness and
completeness in the context of orientation within a PMG. Let Q be a PMG. We say that orientations in Q are sound if there
is at least one MAGM conforming to Q such that invariant edge marks in Q are a subset of edge marks inM. We say that
the orientations in Q are complete if for every A ◦−∗B edge in H, there are two MAGsM1 andM2 represented by Q
containing the edges A→ B and A←∗B, respectively, such thatM1 andM2 conforming to Q.

Structural causal bandit. Let G be a causal diagram and CC(X)G be the c-component (Tian and Pearl, 2002) of
G that contains X where a c-component is a maximal set of vertices connected with bidirected edges. We denote
CC(X)G =

⋃
X∈X CC(X)G . Let MUCT(G,Y ) and IB(G,Y ) be the MUCT and IB given [[G,Y ]], respectively.

Proposition 10 (Proposition 1 in Lee and Bareinboim (2018)). Let G be a causal diagram over the set of variables V. A set
X ⊆ V \ {Y } is a MIS relative to [[G,Y ]] if and only if X ⊆ An(Y )GX

.

Definition 12 (unobserved-confounders’ territory). Given information [[G,Y ]], let H = G[An(Y )G ]. A set of variables
T ⊆ V(H) containing Y is called a UC-territory on G with respect to Y if De(T)H = T and CC(T)H = T. A UC-territory
T is said to be minimal if no T′ ⊊ T is a UC-territory (MUCT).

Definition 13 (interventional border). Let T be a minimal UC-territory on causal diagram G with respect to Y . Then
W = Pa(T)G \T is called an interventional border (IB) for G with respect to Y .

A.2. Assumptions

In this paper, we assume that there is no selection bias in the SCM-MAB system.

A.3. Background Results

We present useful results established in existing work.

A.3.1. BACKGROUND RESULTS IN ZHANG (2006; 2008A)

Lemma 3 (Lemma 0, as used in the proof of Lemma 5.1.7 in Zhang (2006)). Let X and Y be distinct nodes in a MAGM.
If p = ⟨X, · · · ,Z,V ,Y ⟩ is a discriminating path from X to Y for V in a MAGM, and the corresponding subpath between
X and V in P is (also) a collider path, then the path corresponding to p in Q is also a discriminating path for V .

Lemma 4 (Lemma A.1 in Zhang (2008a) & Lemma 5 in Jaber et al. (2018)). Let P be a PAG over V, and let P[A] be the
subgraph of P induced by A ⊆ V. For any three nodes A,B,C, if A∗→ B ◦−∗C, then there is an edge between A and C
with an arrowhead at C, namely, A∗→ C. Furthermore, if the edge between A and B is A→ B, then the edge between A
and C is either A→ C or A◦→ C (i.e., it is not A↔ C).

Lemma 5 (Lemma 3.3.2 in Zhang (2006)). In a PAG P , for any two nodes A and B, if there is a circle path, then following
holds:

1. If there is an edge between A and B, the edge is not into A or B;

2. For any other node C, C ∗→ A if and only if C ∗→ B. Furthermore, C ↔ A if and only if C ↔ B.

Lemma 6 (Theorem 2 in Zhang (2008a)). Let P be a PAG. LetM be the graph resulting from the following procedure
applied to a P .

Step 1. Replace all partially directed edges (◦→) in P with directed edges (→).

Step 2. Orient the circle component of P into a DAG with no unshielded colliders.

Then, the result graphM conforms to P .
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Lemma 7 (Lemma B.1 in Zhang (2008a)). Let A and B be two distinct nodes in a PAG P . If p is a possibly directed path
from A to B in a PAG P , then some subsequence of p forms an uncovered possibly directed path from A to B in P .

Lemma 8 (Lemma B.2 in Zhang (2008a)). Let A and B be two distinct nodes in a PAG P . If p = ⟨V0(= A), · · ·Vn(=
B)⟩,n ≥ 2, is an uncovered possibly directed path from A to B in P , and Vi−1 ∗→ Vi for some i ∈ {1, · · · ,n}, then
Vj−1 → Vj for all j ∈ {i+ 1, · · · ,n}.

Lemma 9 (Lemma B.4 in Zhang (2008a)). In a PAG P , if there is a possibly directed path from A to B, then the edge
between A and B, if any, is not into A.

Lemma 10 (Lemma B.5 in Zhang (2008a)). In a PAG P , let A and B be two distinct nodes in a PAG P . If there is a
possibly directed path from A to B that is into B, then every uncovered possibly directed path from A to B is into B.

Lemma 11 (Lemma B.7 in Zhang (2008a)). In a PAG P , if there is a circle path between two adjacent vertices in P , then
the edge between the two vertices is a circle edge (◦−◦).

A.3.2. BACKGROUND RESULTS IN MAATHUIS AND COLOMBO (2015); PERKOVIC ET AL. (2018)

Lemma 12 (Lemma 7.6 in Maathuis and Colombo (2015)). Let P be a PAG with k edges into X , k ≥ 0. Then there exists
at least one MAGM in the Markov equivalence class represented by P that has k edges into X .

Lemma 13 (Lemma 48 in Perkovic et al. (2018)). Let X be a node in a PAG P . LetM be a MAG conforming P that
satisfies Lem. 6. Then any edge that is either X ◦−◦Y , X ◦→ Y , or invisible X → Y in P is invisible X → Y inM.

A.3.3. BACKGROUND RESULTS IN JABER ET AL. (2018; 2022)

Lemma 14 (Proposition 1 in Jaber et al. (2018)). Let P be a PAG over V, and G be any causal diagram in the equivalence
class represented by P . Let X ̸= Y be two nodes in A ⊆ V. If X is an ancestor of Y in G[A], then X is a possible
ancestor of Y in P[A].

Lemma 15 (Lemma 4 in Jaber et al. (2018)). Let P be a PAG over V. For every directed edge X → Y in induced subgraph
P[A] with A ⊆ V, if it is visible in P , then it is also visible in P[A].

Lemma 16 (Proposition 2 in Jaber et al. (2018)). Let P be a PAG over V, and G be any causal diagram in the equivalence
class represented by P . Let X ̸= Y be two nodes in A ⊆ V. If X and Y are in the same c-component in G[A], then X and
Y are in the same pc-component in P[A], i.e., B ∈ CC(A)G[A] ⇒ B ∈ PC(A)P[A] where A,B ∈ A.

Algorithm 2 Partial Topological Order PTO (Jaber et al., 2018)
Input: P , A ⊆ V(P)
Output: Partial Topological Order over P[A]

1 while there exists a bucket B in P[A] with only arrowheads incident on it do
2 Extract B from P[A]
3 A← A \B
4 end
5 The partial order is B1 ≺ · · · ≺ Bm in reverse order of the bucket extraction, i.e., B1 is the last bucket extracted and Bm is the first.

Lemma 17 (Proposition 4 in Jaber et al. (2018)). Let P be a PAG over V, and let P[A] be the subgraph of P induced by
A ⊆ V. Then, Alg. 2 is sound over P[A], in the sense that the partial order is valid with respect to G[A], for every causal
diagram G in the equivalence class represented by P .10

Lemma 18 (Lemma 6 in Jaber et al. (2018)). InM[A], whereM is a MAG over V and A ⊆ V, the following property
holds:

10A bucket refers to the closure of nodes connected with circle paths.
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For any three vertices A,B,C, if A∗→ B → C and both edges are invisible, then we have A∗→ C and the edge is
invisible.

Lemma 19 (Lemma 18 in Jaber et al. (2022)). Let P be a PAG over V, and let P[A] be the subgraph of P induced by
A ⊆ V. In P[A], the following property holds:

For any three vertices A,B,C, if A∗→ B ?→ C and both edges are invisible, then we have A∗→ C and the edge is
invisible.

A.3.4. BACKGROUND RESULTS IN WANG ET AL. (2023B; 2024A)

Lemma 20 (Lemma 2 in Wang et al. (2023b)). Let Q be a PMG obtained from some valid local transformations from
a PAG P and the orientation rules. If p is a possibly directed path from A to B in Q, then some subsequence of p is an
uncovered possibly directed path from A to B in Q.

Lemma 21 (Lemma 3 in Wang et al. (2023b)). Let Q be a PMG obtained from some valid local transformations from a
PAG P and the orientation rules. In a PMG Q, for any two nodes A and B, if there is a circle path, then following holds:

1. If there is an edge between A and B, the edge is not into A or B;

2. For any other node C, C ∗→ A if and only if C ∗→ B. Furthermore, C ↔ A if and only if C ↔ B.

Lemma 22 (Lemma 4 in Wang et al. (2023b)). Let Q be a PMG obtained from some valid local transformations from
a PAG P and the orientation rules. Suppose a MAG M consistent to Q and the local transformation CQ

X . Then
Y ∈ PossDe(X)Q\CQ

X
if and only if Y ∈ De(X)M.

Lemma 23 (Lemma 16.1 in Wang et al. (2023b)). Let Q be a PMG obtained from some valid local transformations from a
PAG P and the orientation rules. The MAG oriented according to Lem. 6 conforms to Q.

Lemma 24 (Lemma 2 in Wang et al. (2024a)). Let Q be a PMG obtained from some valid local transformations from
a PAG P and the orientation rules. If there is an uncovered circle path p = ⟨V1,V2, · · · ,Vn⟩,n ≥ 3 in Q, then any two
non-consecutive vertices are not adjacent (minimal circle path).

B. Experiments
We provide the detailed experimental settings in the main paper and present the results of additional experiments.

B.1. Experiment Details

We consider three strategies for selecting arms: POMISs, DMISs, and Brute-force, combined with two prominent MAB
solvers: Thompson Sampling (TS) (Thompson, 1933; Chapelle and Li, 2011; Agrawal and Goyal, 2012; Kaufmann et al.,
2012) and Kullback-Leibler Upper Confidence Bound (KL-UCB) (Garivier and Cappé, 2011; Cappé et al., 2013). In the
Brute-force strategy, all combinations of arms

⋃
X⊆V\{Y } XX are evaluated. The SCM representing the target system as

follows:

S1 =



fA = UA ∧ UAC

fB = C ∨ ((1− UB) ∧ UBY )

fC = A ∨ ((1− UC) ∧ UAC)

fD = Y ∧ UD

fY = [(1−B) ∨ {(1− C) ∧ (1− UBY )}] ∧ UY

S2 =



fA = C ⊕ UA

fB = (C ∨ Y ) ∧ (UB ⊕ UBC)

fC = {(1− Y )⊕ (1− UBC)} ∧ UC

fD = UD

fY = D ⊕ UY ,
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Figure 9: (a, b) Cumulative regret for the corresponding KL-UCB (solid) and TS (dashed) under distinct strategies: Brute-
force, DMIS, and POMIS. (d, e) The agent interacts with one of the environments S1 and S2 which associate with G1 and
G2, respectively. Both of causal diagrams conform to the PAG P in (c).

where the domains of all action variables A,B,C,D and the unobserved confounders are binary. For the first SCM
S1, the exogenous variables are drawn from distributions P (UA = 1) = 0.44, P (UB = 1) = 0.7, P (UC = 1) = 0.4,
P (UD = 1) = 0.59, P (UY = 1) = 0.42 and the unobserved confounder is drawn from P (UBY = 1) = 0.28 and
P (UAC = 1) = 0.77. The second SCM S2 follows P (UA = 1) = 0.74, P (UB = 1) = 0.74, P (UC = 1) = 0.28,
P (UD = 1) = 0.32, P (UY = 1) = 0.23 and the unobserved confounder is drawn from P (UBC = 1) = 0.46.
The DMISs and POMISs with respect to [[P,Y ]] are {∅, {A}, {B}, {C}, {D}, {A,B}, {B,C}, {B,D}, {C,D}} and
{∅, {B}, {C}, {D}, {B,C}, {B,D}, {C,D}}, respectively. The number of arms for each strategy—Brute-force, DMIS,
and POMIS—is 81, 25, and 19, respectively.

B.2. Additional Experiments

We conducted additional experiments to confirm the effect of considering POMIS. The deployed agent does not have access
to the underlying causal diagram and can only leverage the PAG P in Fig. 9, which abstracts the causal diagram of a true
environment. The SCM representing the target system compatible with P as follows:

S1 =


fA = B ⊕ UA

fB = UB ⊕ UBC

fC = (A ∨ UC) ∧ (B ⊕ UBC)

fY = {(1−B)⊕ (1− UY )} ∧ C

S2 =


fA = {(1−B)⊕ (1− UA)} ∧ UAC

fB = UB ⊕ UBY

fC = (B ⊕ UAC) ∧ (A ∨ UC)

fY = (B ⊕ UY ) ∧ (C ∨ UBY ),

where the domains of all action variables A,B,C and the unobserved confounders are binary. For the first SCM S1,
the exogenous variables are drawn from distributions P (UA = 1) = 0.23, P (UB = 1) = 0.46, P (UC = 1) = 0.22,
P (UY = 1) = 0.47, and the unobserved confounder is drawn from P (UBC = 1) = 0.59. The second SCM S2 follows
the same distribution for exogenous variables, while the unobserved confounders follow P (UAC = 1) = 0.59 and
P (UBY = 1) = 0.37. The DMISs and POMISs with respect to [[P,Y ]] are {∅, {A}, {B}, {C}, {A,B}, {B,C}, {A,C}}
and {∅, {A}, {B}, {C}, {B,C}}, respectively.

S1 S2

TS
POMIS 112.99 ± 70.90 79.17 ± 51.61
DMIS 207.08± 79.75 159.13 ± 55.31
BF 219.34± 61.98 198.96 ± 55.02

KL-UCB
POMIS 206.96 ± 61.89 188.60 ± 55.10
DMIS 355.94± 62.07 375.13 ± 63.35
BF 377.44± 59.35 440.86 ± 60.82

Table 2: Mean and standard deviation of cumulative regret.

The number of trials is set to 10,000, which is sufficient
to observe the performance differences. Simulations are
repeated 1,000 times to ensure consistent results.

The simulation results in Table 2 illustrate the clear per-
formance gaps between the different strategies. We focus
on a experiment comprising KL-UCB and S2 as a repre-
sentative example. At the end of the trials, each of the
three strategies–Brute-force (BF), DMIS, and POMIS–
yields cumulative regrets (mean ± standard deviation) of
440.86 ± 60.82, 375.13 ± 63.35, and 188.60 ± 55.10,

respectively. This clearly indicates the advantage of having a smaller number of arms (BF 27, DMIS 19, POMIS 11).
Furthermore, the superiority of POMIS remains consistent across both S1 and S2, regardless of the solvers used. These
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results demonstrate that refining arms by considering the Markov equivalence class into account enhances the efficiency of
agents when interacting with the underlying environment.

C. Discussions
We discuss circle mark transformations from the perspective of orientation completeness and topological order as well as the
discussions on IsPOMIS. Finally, we discuss the expected future works of our study.

Local transformations. Let Q̃X be a PMG that satisfies the two conditions in Prop. 8, and is closed under orientation
rules R1−R3, R̃4,R8−R13, and RSB. It is important to note that the completeness of Q̃X remains an open problem.
Therefore, Q̃X is inadequate to completely characterize POMIS for PAGs.

Remark 2. Every Qi
X is complete for orientations; for any A◦−∗B in Qi

X, there are two MAGsM1 andM2 represented
by Qi

X containing A→ B and A←∗B respectively.

Moreover, even though we have access to Q∗
X, a PMG that satisfies the two conditions in Prop. 8 and the orientation

completeness, Q∗
X is still insufficient to ensure X ⊆ An(Y )Q∗

X
. To witness, consider a PAG P in Fig. 5 with X = {A}.
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Figure 10: The light blue region indicates possible ancestors of Y . (a) PMG incorporating the information that {A} is a
DMIS. (b) PMG with orientation completeness. (c) MAG represented by Q{A} while A /∈ An(Y )M. (d) PMG representing

sound and complete orientations over MAGs satisfying that {A} is a MIS. (e) PMG with C
Q{A}
{A} = ∅ and C

Q{A}
{Y } = {B}.

Then C ◦−◦Y in P corresponds to C ◦→ Y in Q∗
X, according to the first condition in Prop. 8 supported by the uncovered

proper possibly directed path A ◦−◦C ◦−◦Y . Moreover, Y → D is oriented by R1, and all remaining circle marks can
vary across the underlying MAGs represented by Q∗

X. Here, we can find the MAGM where X /∈ An(Y )M by orienting
C ◦→ Y as C ↔ Y , suggesting that additional information (orientation) is necessary.

Furthermore, neither Q∗
X nor Q̃X guarantees the balanced property (Lemmas 4 and 31). To witness, refer to Q∗

{C} in

Fig. 6d, which is identical to Q̃{C}. We can observe that there is C → Y ◦−◦B while C ◦−◦B, which violates the balanced
property.

Complexity of IsPOMIS. A trivial approach is to enumerate all possible MAGsM conforming to a given PAG, and
verify whether IB(M,Y ,X) holds for eachM. However, since the number of MAGs represented by the PAG is super-
exponentially larger than the size of the PMG space (distinct PMGs Qi

X fully oriented by local transformations around
A = X∪ {Y }), as discussed in Wang et al. (2022; 2023a;b; 2024a), such approach is prohibitive. Each local transformation
for a vertex takes a O(2p) complexity where p denotes the number of circle marks around the vertex, and each orientation
rules take O(|V|3) complexity (Zhang, 2008a).

MUCT and IB in PAGs. One might surmise that X = IB(P,Y ,X) is an appropriate characterization of POMIS for
PAGs. However, this approach does not hold. For an illustration, consider a PAG P in Fig. 5a and a set X = {A}, which is
a DMIS with respect to [[P,Y ]]. Moreover, we can simply derive IB(P,Y ,X) = {A}, and thus X = IB(P,Y ,X) holds.
For X to be a MIS for a MAGM represented by P , the edge A◦−◦C should correspond to A→ C inM, implying the
visible edges C → B and C → Y , as these are non-definite colliders (seeM1 andM2 in Fig. 5, and Fig. 10d). Regardless
of the edge orientation of B ◦−◦Y , we find IB(M,Y ,X) = {C}, as in Fig. 10e. Thus, X = {A} is not a POMIS with
respect to [[M,Y ]] for allM∈ [P]. Therefore, the interventional border in PAGs IB(P,Y ,X) fails to characterize POMIS.
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Characterizations in PMGs. MIS for PAGs can be generalized to PMGs obtained through local transformations, as they
satisfy orientation completeness (Thm. 8). Furthermore, all characterizations for PAGs in the main paper can be applied to
MAGs, since a MAG can be regarded as a PMG that is fully oriented through local transformations until no circle marks
remain.

Future works. In future research, given the availability of an observational distribution, it becomes possible to identify
specific causal effects and eliminate suboptimal arms (Jaber et al., 2022). Moreover, integrating this approach with partial
identification (Bellot, 2024), enables the exclusion of arms where the upper bound is less than the lower bound of another
arm, as proposed by Zhang and Bareinboim (2017). Finally, one can account for uncertainty in identification or bounds
caused by a finite sample, which will lead to more robust analyses.

D. Auxiliary Results
In this section, we provide auxiliary results utilized throughout the paper.

Lemma 25. Let P be a PAG over V, and let P[A] be the subgraph of P induced by A ⊆ PossAn(Y )P ⊆ V. If X and Z
belong to different buckets over P[A], then the starting edges of any uncovered proper possibly directed paths from X and
Z to Y with respect to X are not relevant.

Proof. Since X and Z are not in the same bucket, there is no circle path connecting the two nodes. Consequently, X and Z
are not relevant.

Lemma 26. Let P be a PAG over the set of variables V. If a set X ⊆ V \ {Y } is a DMIS relative to [[P,Y ]], then there
exists a MAGM such that every X ∈ X has a proper directed path to Y with respect to X inM.

Proof. According to Prop. 5 and thm. 2, there exists a MAGM such that X ⊆ An(Y )MX
. For the sake of contradiction,

suppose that X ⊆ An(Y )MX
holds while there is no proper directed path from X ∈ X to Y with respect to X inM. This

implies that every directed path from X to Y must contain some node Z ∈ X \ {X}. Consequently, such paths would be
cut by the X-lower manipulation, resulting in X /∈ An(Y )MX

. This contradicts the assumption that X ⊆ An(Y )MX
.

Lemma 27. Let Q be a PMG obtained from some valid local transformations from a PAG P and the orientation rules. In
Q, the following property holds:

If A→ B is visible, then every A→ C is also visible for every C connected as circle path with B.

Proof. For the sake of contradiction, assume that there exists a node C such that A→ C is invisible while connected as
circle path with B.

First, let D∗→ A be an arbitrary edge that makes A→ B visible. Since A→ C is invisible, D and C must be adjacent and
the edge is into C by the orientation ruleR2 (i.e., D∗→ C). According to Lem. 31, this implies the existence of D∗→ B,
which contradicts the assumption that A→ B is visible.

Next, consider the path D∗→ V1 ↔ · · · ↔ Vn ↔ A with n ≥ 1 where Vi is a parent of B. By Lem. 31, we get that there
exist edges Vi

?→ C for all Vi. Furthermore, these edges must take the form Vi → C, because if any edges Vi ◦→ C
existed,R′

4 would be triggered, resulting in Vi → C. Therefore, A→ C is also visible, leading to a contradiction for the
assumption that A→ C is invisible. This concludes the proof.

Lemma 28. Let Q be a PMG obtained from some valid local transformations from a PAG P and the orientation rules, and
G be any causal diagram in the equivalence class represented by Q. Let X ̸= Y be two nodes in A ⊆ V(Q). If X is an
ancestor of Y in G[A], then X is a possible ancestor of Y in Q[A].
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Proof. The lemma follows the proof of Lem. 14 (Prop. 1 in Jaber et al. (2018)). If X is an ancestor of Y in G[A], then there
exists a directed path X → · · · → Y in G[A]. This path is also present in G, and consequently in the corresponding MAG
M. Hence, the path corresponds to a possibly directed path in Q. Since all nodes along the path are in A, they are also
present in Q[A], implying X is a possible ancestor of Y in Q[A].

Lemma 29. Let Q be a PMG obtained from some valid local transformations from a PAG P and the orientation rules, and
G be any causal diagram in the equivalence class represented by Q. Let X ̸= Y be two nodes in A ⊆ V(Q). For every
X → Y in Q[A], if it is visible in Q, then it remains visible in Q[A].

Proof. The proof follows the argument of Lem. 15 (Lem 4. in Jaber et al. (2018)). Let G defined over V(Q) ∪ L. Let
X → Y be a visible edge inQ where X and Y are in A. Then, there is no inducing path between X and Y relative to L that
is into X in G. It follows that no such inducing path (relative to the latent nodes in G[A]) exists in the subgraph G[A].

Lemma 30. Let Q be a PMG obtained from some valid local transformations from a PAG P and the orientation rules, and
G be any causal diagram in the equivalence class represented by Q. Let X ̸= Y be two nodes in A ⊆ V(Q). If X and Y
are in the same c-component in G[A], then X and Y are in the same pc-component in Q[A], i.e., B ∈ CC(A)G[A] ⇒ B ∈
PC(A)Q[A] where A,B ∈ A.

Proof. The proof follows the argument of Lem. 16 (Prop. 2 in Jaber et al. (2018)). If X and Y are in the same c-component
in G[A], then there is a bidirected path p in G[A].

Lemma I (Lemma 6 in Jaber et al. (2018)). LetM be a MAG over V and G be a causal diagram represented byM.
For any X and Y in V, if there is a bidirected path p between X and Y in G, then there is a path p′ between X and Y
inM over a subsequence of p such that (1) all the non-endpoint nodes are colliders, and (2) all directed edges on p′ are
invisible.

Lemma II (Lemma 7 in Jaber et al. (2018)). LetM be a MAG over V and P be a PAG representingM. For any X
and Y in V, if there is a path p between X and Y inM such that (1) all non-endpoint nodes are colliders and (2) all
directed edges, if any, are not visible, then there is a path p∗ between X and Y in P over a subsequence of p such that
(1) all non-endpoint nodes along the path are definite colliders, and (2) none of the edges are visible.

According to Lemma I, we choose a path p′, which is the shortest subsequence of p between X and Y inM, corresponding
to p∗ in P , such that (1) all non-endpoint nodes along the path are colliders, and (2) none of the directed edges are visible.
By Lemma II, the path p∗ is a definite colliding path between X and Y , and none of the directed edges along the path are
visible in P . For contradiction, assume that p† in Q, which is corresponding to p∗ in P , includes a visible edge out of X .
Then, the visible edge must appear in all MAGs represented by Q. However, the edge along p′ is invisible inM, leading to
a contradiction. Therefore, p† is also of definite status, containing no visible edges, which implies that X and Y are in the
same pc-component in Q. Since all nodes along p† are in A, p† is also present in Q[A], ensuring that X and Y are in the
same pc-component in Q[A].

Lemma 31. Let Q be a PMG obtained from some valid local transformations from a PAG P and the orientation rules, and
Q[A] be the induced graph over A ⊆ V(Q). For any three nodes A,B,C in Q, if A∗→ B ◦−∗C, then there is an edge
between A and C with an arrowhead at C, namely, A∗→ C. Furthermore, if the edge between A and B is A→ B, then
the edge between A and C is either A→ C or A◦→ C (i.e., it is not A↔ C).

Proof. The balanced property holds in the PMG with local transformations as shown in Thm. 8 (Theorem 1 in Wang et al.
(2023b)). By the definition of an induced graph, this property is preserved in Q[A].

Lemma 32. Let Q be a PMG obtained from some valid local transformations from a PAG P and the orientation rules. In a
PMG Q, for any two nodes A and B, if there is a circle path, then following holds:
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1. If there is an edge between A and B, the edge is not into A or B;

2. For any other node C, C ∗→ A if and only if C ∗→ B. Furthermore, C ↔ A if and only if C ↔ B.

Proof. The proof follows the argument of Lem. 5 (Lem 3.3.2 in Zhang (2006)). The properties depend on the balanced
property in Lem. 4, which holds in Q as demonstrated in Thm. 8 and lem. 31.

Lemma 33. LetQ be a PMG obtained from some valid local transformations from a PAG P and the orientation rules. PTO
(Alg. 2) is also sound over Q[A], in the sense that the partial order is valid with respect to G[A], for every causal diagram
G in the equivalence class represented by Q.

Proof. The proof follows the argument of Lem. 17 (Prop. 4 in Jaber et al. (2018)). By Lem. 28, the possible-ancestral
relations in Q[A] subsume those in G[A]. Hence, a partial topological order that is valid with respect to Q[A] is also valid
with respect to G[A]. The correctness of Alg. 2 relies solely on the balanced property, which is satisfied in the PMG with
local transformations as per Thm. 8 and lem. 31. Thus, the algorithm is also sound with respect to Q[A].

E. Proofs
In this section, we provide detailed proofs of the propositions and theorems presented in the main body of the paper.

Theorem 2. LetM be a MAG over the set of variables V. Given information [[M,Y ]], a set X ⊆ V \ {Y } is a MIS
relative to [[M,Y ]] if and only if X ⊆ An(Y )MX

holds.

Proof. (If) Suppose that X is not a MIS relative to [[M,Y ]]. This implies that there exists some X′ ⊊ X such that
µx[X′] = µx for every SCM conforming to the MAGM. For the sake of contradiction, assume that X ⊆ An(Y )MX

. To
derive a contradiction, it suffices to construct a SCM such that µx[X′] ̸= µx. Consider the causal diagram G generated by
the following procedure:

Step 1. If A→ B inM, then add a directed edge A→ B to G.

Step 2. If A↔ B inM, then add a bidirected edge A↔ B to G.

From this construction, it is clear that the causal diagram G corresponds toM. Furthermore, we have X ⊆ An(Y )GX
since

G andM have the exact same edges.

Now consider the following SCM associated with G: Each variable in Vi ∈ V(G) is associated with a unique latent variable
Ui and the function of each endogenous variable in V(G) is the sum of the value of its parents. Since X ⊆ An(Y )GX

holds, there exist directed paths from X \X′ to Y without passing through X′. Let W = X \X′. Then, setting W to
E[W | do(x′)] + 1 results in a larger outcome value for Y , i.e., µx = µw,x′ > µx[X′], which leads to a contradiction.

(Only if) Suppose that X ̸⊆ An(Y )MX
holds. This indicates that there exists a nonempty subset Z ≜ X \ An(Y )MX

. Let
X′ = X \ Z. Our goal is to show that Y and Z are m-separated by X′ inMX. Once established, we can apply Rule 3 of
do-calculus for MAGs (Zhang, 2008b) to derive µx′ = µx′,z.

For contradiction, assume that there exists some variable Z ∈ Z such that Z and Y are m-connected conditioning on X′ in
MX. This means the existence of a m-connected path p between Z and Y . Since Z has its incoming edges removed, p must
start with an edge outgoing from Z. If there were any collider along the path, it would be m-separated, as the collider cannot
be an ancestor of a conditioned node X′. However, if the path p begins with an outgoing edge from Z and has no colliders,
then it must be a directed path from Z to Y . This implies that Z ∈ An(Y )MX

holds, thus Z and Y are not m-separated by
X′ inMX, leading to a contradiction. Consequently, we have that X is not a MIS relative to [[M,Y ]].

Proposition 1. LetM be a MAG over the set of variables V. A set X ⊆ V \ {Y } is a MIS relative to [[M,Y ]] if and only
if there exists a causal diagram G conforming toM such that X is a MIS relative to [[G,Y ]].
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Proof. (If) Let X be a MIS relative to [[G,Y ]] for some causal diagram G conforming toM. By the definition of MIS for
causal diagrams in Def. 1, there is no X′ ⊊ X such that for all SCM conforming to G, µx[X′] = µx. In other words, for
every X′ ⊊ X, there exists an SCM S conforming to G such that µx[X′] ̸= µx. Since any SCM conforming to G also
conforms toM, we know that S also conforms toM. Thus, for any proper subset X′ ⊊ X, there exists an SCM associated
withM in which µx[X′] = µx holds.

(Only if) Let X be a MIS relative to [[M,Y ]]. The causal diagram G constructed in the same manner as in the proof of thm. 2
conforms toM and satisfies X ⊆ An(Y )GX

. Therefore, we can conclude that X is a MIS relative to [[G,Y ]] supported by
Prop. 10.

Proposition 2. Let P be a PAG over the set of variables V. A set X ⊆ V \ {Y } is a MIS relative to [[P,Y ]] if and only if,
for every variable X ∈ X, there exists a proper possibly-directed path from X to Y with respect to X in P .

Proof. (If) Suppose that X is not a MIS relative to [[P,Y ]], which implies that there exists some proper subset X′ ⊊ X
such that µx[X′] = µx for every SCM conforming to P . For contradiction, suppose that for all X ∈ X, there exist proper
possibly-directed paths from X to Y with respect to X in P . Let W = X \X′ and W be a vertex in W. Suppose that p is
an uncovered proper possibly-directed path from W to Y with respect to X in P . LetM∈ [P] be a MAG constructed by
the following procedure:

Step 1. Orient all edges along p as directed edges.

Step 2. Orient the remaining edges according to Lem. 6.

Then, p corresponds to a proper directed path from W to Y with respect to X inM. Thus, W ∈ An(Y )MX
holds. We

can then use the same construction in the proof of Thm. 2. In the constructed causal diagram G, W ∈ An(Y )GX
holds.

Furthermore, we know there exists an SCM S in which W has a positive causal effect on Y which is not mediated by any
variable in X. Thus, setting W to E[W | do(x′)] + 1 will result in a larger outcome for Y , i.e., µx = µw,x′ > µx[X′],
meaning µx ̸= µx[X′], which contradicts the statement: µx[X′] = µx for every SCM conforming to P .

(Only if) Suppose that for some Z ∈ X, there is no proper possibly directed path from Z to Y with respect to X in P . Let
X′ = X \ {Z}. We aim to show that P (y | do(x′)) = P (y | do(x′, z)), which would imply µx′ = µx′,z . Unfortunately,
we cannot apply Rule 3 of do-calculus for PAGs, since it is not guaranteed that X and Y are definitely m-separated by X′ in
PX. However, we can reason over the MAGs in the Markov equivalence class represented by P .

All paths from Z to Y in P which do not pass through X must not be a directed path due to our assumption, i.e., they all
contain an arrowhead pointing towards Z. LetM be a MAG conforming to P . Then, all paths from Z to Y inM which
do not pass through X must also be non-directed. Thus, using similar reasoning as in the proof of Thm. 2, Z and Y are
m-separated by X′ inMX. This is because any path out of Z to Y must contain a collider node, which must be blocked,
since it cannot be an ancestor of any conditioned node. Therefore, we conclude that P (y | do(x′)) = P (y | do(x′, z)).
Since this argument holds for every MAG conforming to P , it holds for all SCMs conforming to P .

Proposition 4. Let D be either a causal diagram or a MAG. If a set X is a MIS with respect to [[D,Y ]], then X is a DMIS
with respect to [[D,Y ]].

Proof. Without loss of generality, assume that all nodes in D are ancestors of Y . For contradiction, assume that X is a
MIS but not a DMIS relative to [[D,Y ]]. By Thm. 2 and prop. 10, we have X ⊆ An(Y )DX

. Then, we can consider an SCM
S∗ compatible with D, where all mechanisms consist of the sum of the values of their parents, i.e., fi =

∑
|Pai| pai +ui.

Let X′ be an arbitrary proper subset of X, and W denote X \X′. Such a model S∗ always ensures that setting W as
E[W | do(x′)] + 1 results in µx = µw,x′ > µx[X′] for any proper subset X′ since there exist directed paths from each
W ∈W to Y without passing through X′. The existence of S∗ leads to a contradiction.

Proposition 5. Let P be a PAG over the set of variables V. A set X ⊆ V \ {Y } is in DP,Y if and only if there exists a
MAGM conforming to P such that X ∈MM,Y .
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Proof. (If) Suppose X ⊆ V \ {Y } be a MIS relative to [[P,Y ]], and there exists a MAGM conforming to P where X
is a MIS relative to [[M,Y ]]. By Prop. 4, X is a DMIS relative to [[M,Y ]]. Hence, there exists an SCM S such that for
any proper subset X′, µx[X′] ̸= µx holds. Since S conforms toM, it also conforms to P , thus concluding proof for this
direction.

(Only if) Suppose X ⊆ V \ {Y } be a DMIS relative to [[P,Y ]]. By the definition of DMIS (4), there exists an SCM S
associated with P such that, for every X′ ⊊ X, µx[X′] ̸= µx holds. Therefore, X is a MIS, since for any proper subset X′,
µx[X′] ̸= µx holds under the SCM S.

Theorem 3. Let P be a PAG over the set of variables V. A set X ⊆ V \ {Y } is a DMIS relative to [[P,Y ]] if and only if,
for any pair of vertices X,Z ∈ X, there exist uncovered proper possibly-directed paths from X and Z to Y with respect to
X such that their starting edges are not relevant.

Proof. (If) Let pX denote an uncovered proper possibly-directed path from X to Y with respect to X in P . Suppose that X
is not a DMIS, implying that, for all MAGsM ∈ [P], it holds that Z /∈ An(Y )MX

and X ∈ An(Y )MX
without loss of

generality. In other words, if orienting pX as X → · · · → Y is valid, it follows that orienting any possibly directed path
from Z to Y as Z → · · · → Y is invalid in all MAGs conforming to P . We will show that the starting edge of pX is relevant
to the starting edge of any uncovered possibly-directed path from Z to Y in P .

Let pZ be an arbitrary uncovered proper possibly-directed path from Z to Y with respect to X in P . Note that such a path
always exists, as established by Lem. 7. We know that the path pZ must begin with one of the following edges: ◦−◦ , ◦→ ,
or→. We will show that pZ can only start with a circle edge (◦−◦).

(pZ only starts with a circle edge (◦−◦)). Suppose pZ starts with ?→. Then, the path must take the form Z ?→ · → · · · →
Y in P by Lem. 8. In this case, we can construct a validM by orienting any circle marks (◦) along the path as tails (−)
following Lem. 6. This contradicts the assumption that there is no MAG conforming P in which pZ is a directed path from
Z to Y . Therefore, we conclude that pZ only can be Z ◦−◦· · ·∗−∗Y .

For the sake of contradiction, assume eX(X ∗−∗X ′) is not relevant to eZ(Z
′ ◦−◦Z) where each denotes the starting edges

of pX and pZ respectively; Then, we consider the following two cases separately: ① X and Z are not in the same bucket, or
② they are in the same bucket, and every circle path including eX and eZ is not uncovered, i.e., they are not relevant.

(① X and Z do not belong to the same bucket). Consider the orientation according to Lem. 6. In the second step of the
construction, we always have a MAGM containing Z → Z ′ by the completeness of orientation in PAGs, which indicates
pZ corresponds to a directed path from Z to Y inM, as it is uncovered. Therefore, we can construct a validM according
to Lem. 6, contradicting the assumption that Z /∈ An(Y )MX

for all MAGsM∈ [P].

(② X and Z are in the same bucket). Suppose that X and Z are in the same bucket. Let V1(= X) ◦−◦V2(= X ′) ◦−◦
· · ·◦−◦Vn−1(= Z ′)◦−◦Vn(= Z) be an arbitrary non-uncovered circle path between X and Z in P . By the definition of an
uncovered circle path, such a path must include at least one non-uncovered triple ⟨Vi,Vi+1,Vi+2⟩ on the circle path. The
existence of an edge between Vi ◦−◦Vi+2 would induce an uncovered circle path V1 ◦−◦· · ·◦−◦Vi ◦−◦Vi+2 ◦−◦· · ·◦−◦Vn.
To avoid this, X and Z must be adjacent, and furthermore, the edge connecting X and Z must appear as a circle edge
X ◦−◦Z by Lem. 11.

The existence of the edge X ◦−◦ Z implies that there must be edges X ◦−◦ Vi for all 3 ≤ i ≤ n − 1, or Z ◦−◦ Vi for
all 2 ≤ i ≤ n− 2 by chordality. In the former case, we orient the subgraph of P over {V1, · · · ,Vn} following a similar
approach to the proof of Lemma 7.6 in Maathuis and Colombo (2015). We begin by selecting a vertex V2 and orient all
edges incident to V2 as directed into V2. Since the subgraph is chordal and V2 is simplicial, this orientation does not create
any uncovered colliders in the subgraph. We then remove V2 and the oriented edges from the subgraph. The resulting
graph remains chordal and therefore again choose a vertex V3, and orient any edges incident to V3 into V3. We continue
this procedure until all edges are oriented. The constructed subgraph does not create any directed cycle, almost directed
cycle, or uncovered collider, thus it is valid orientations. Since X → X ′ → · · · → Y is valid, we have a directed path
Z → Z ′ → · · · → X ′ → · · · → Y which leads to a contradiction.

In the latter case, we can similarly orient the edges, starting from Vn−1 and proceeding to V2. Furthermore, this procedure
can also be extended to cases where the graph takes on a superimposed form.

(Only if) Suppose that eX is relevant to eZ in P . It follows that V1(= X)◦−◦V2(= X ′)◦−◦· · ·◦−◦Vn−1(= Z ′)◦−◦Vn(=
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Z) is an uncovered circle path. For the sake of contradiction, assume that X is a DMIS relative to [[P,Y , ]]. Then, there
exists a MAGM conforming to P such that both pX and pZ are proper directed paths with respect to X inM. Therefore,
we can orient V1 ◦−◦V2 as V1 → V2, and Vn ◦−◦Vn−1 as Vn → Vn−1 to constructM from P . Furthermore, since the circle
path is uncovered, Vi ◦−◦Vi+1 must be oriented Vi → Vi+1 for i = 2, · · · ,n− 2. However, this orientation introduces a
new uncovered collider Vn−2 → Vn−1 ← Vn, which leads to a contradiction.

Proposition 6. LetM be a MAG over the set of variables V. A set X ⊆ V \ {Y } is a POMIS relative to [[M,Y ]] if and
only if there exists a causal diagram G conforming toM such that X is a POMIS relative to [[G,Y ]].

Proof. (If) Suppose that X is a POMIS relative to [[G,Y ]] for some G conforming toM. Then there exists an SCM S
conforming to G such that µx∗ > ∀W∈MG,Y \{X}µw∗ . Since any SCM conforming to G also conforms toM, the SCM also
conforms toM, the SCM S also conforms toM, and thus X is a POMIS relative to [[M,Y ]].

(Only if) Let X be a POMIS relative to [[M,Y ]]. Then there exists an SCM S conforming to M such that µx∗ >
∀W∈MM,Y \{X}µw∗ . Let G be the causal diagram associated with S . This G corresponds toM, and X is a POMIS relative
to [[G,Y ]], concluding the proof for this direction.

Theorem 4. LetM be a MAG over the set of variable V. A set X ⊆ V \ {Y } is a POMIS relative to [[M,Y ]] if and only if
X = IB(M,Y ,X).

Proof. (Only if) We will show contrapositive, i.e., if X = IB(M,Y ,X) does not hold, then X is not a POMIS relative
to [[M,Y ]]. We denote W = IB(M,Y ,X) and T = MUCT(M,Y ,X), assuming X ̸= W. Let W′ ≜ W \X. Before
proceeding with the main proof, we first establish that the following conditional independence statement holds:

Claim 1. (Y ⊥⊥W′ | X) holds inMXW′ .

Proof. Suppose that the negation of this statement holds: (Y ̸⊥⊥W′ | X) inMXW′ . This would imply that there exists
an m-connected path from some W ∈W′ to Y given X inMXW′ . For the m-connected path to exist, there must be no
colliders, as no node along the path can be an ancestor of X due to all incoming edges to X being cut inMX. Moreover,
as all outgoing edges from W′ are cut inMW′ , the path cannot begin with an edge going out of W . Therefore, we get
that the m-connected path must be of the following form: W ← W1 ← · · · ← Wn ↔ R1 → · · · → Rm → Y with
n,m ≥ 0 where no node along the path can be in W; otherwise, it would either be part of X, since we are conditioning
on X, or in W′, in which case all of its outgoing arrows would have been removed. Since Y is contained in T, the
parent of Y , Rm, along the path must be either in T or W. However, as previously argued, no node along the path can
be in W; therefore, it must be in T. This reasoning can be applied iteratively up to R1, implying that R1 is also in
T. Since T is closed under PC, the inclusion of R1 in T implies that Wn must also be in T. Additionally, because
T is closed under descendants, Wn−1, · · · ,W1 must also be in T. Consequently, W must be in T as well. However,
this leads to a contradiction, since W is in W, and W and T are disjoint by definition. Therefore, the conditional
independence statement (Y ⊥⊥W′ | X) must hold inMXW′ .

Claim 2. (Y ⊥⊥ X′ |W) holds inMW,X′ where X′ ≜ X \W.

Proof. Suppose this statement is false, i.e., (Y ̸⊥⊥ X′ |W) holds inMW,X′ . Then, there exists an m-connected path
from some X ∈ X′ to Y given W inMW,X′ . Since all edges into X′ are removed, the path must begin with an edge
going out of X . The path cannot contain any colliders, as no node can be an ancestor of a node in the conditioned
set W, given that all incoming edges to W are cut. Thus, all edges along the path must be directed, pointing to Y :
X → W1 → · · · → Wn → Y (n ≥ 0) where no node along the path can be in W, since we are conditioning on W.
The parent of Y , Wn, along the path must be either in T or W, as Y in T . However, as previously argued, no node
along the path can be included in W, which means it must be in T. This reasoning can be applied iteratively up to W1,
implying that W1 is also in T. Therefore, X must be a parent of a node in T, implying that X is in W. This leads to a
contradiction for X ∈ X \W.
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We are now ready to proceed to the main proof. We will show that X is not a POMIS by proving that µx∗ ≤ µw∗ in every
SCM conforming toM. We derive that the following holds:

µx∗ = E[Y | do(x∗)]

=
∑
w′

E[Y | do(x∗),w′]P (w′ | do(x∗))

=
∑
w′

E[Y | do(x∗), do(w′)]P (w′ | do(x∗)) ∵ Claim 1

=
∑
w′

E[Y | do(x∗[W]), do(w′)]P (w′ | do(x∗)) ∵ Claim 2

≤
∑
w′

E[Y | do(w′)]P (w′ | do(x∗))

= E[Y | do(w∗)]

= µw∗ .

Therefore, X is not a POMIS with respect to [[M,Y ]], which completes the proof.

(If) To prove this direction, we will show that if X = IB(M,Y ,X), then X is a POMIS relative to [[M,Y ]]. Suppose that
X = IB(M,Y ,X) holds. By Prop. 6, it suffices to show that there exists a causal diagram G such that X is a POMIS
relative to [[G,Y ]]. Consider the causal diagram G constructed by the following lemma:

Lemma 34. LetM be a MAG. Let G be the graph resulting from the following procedure applied toM.

Step 1. For each visible edge A→ B inM, add A→ B in G.

Step 2. For each bidirected edge A↔ B inM, add A↔ B in G.

Step 3. For each invisible directed edge A→ B inM, if it is the unique invisible edge among directed edges outgoing
from A inM, then add both a directed edge A→ B and bidirected edge A↔ B to G .

Step 4. Let TG ≜ MUCT(G,Y ). Consider all nodes A for which there are invisible edges outgoing from A inM.

1. If there exists B ∈ Ch(A)M that is contained in TG , add both a directed edge A→ B and bidirected
edge A↔ B, and add directed edges A→ C for all C ∈ Ch(A)M \ {B}.

2. Otherwise, if there is no intersection with TG , add directed edges A→ C for all C ∈ Ch(A)M.

This step is repeated with the updated TG ← MUCT(G,Y ) as long as G remains unchanged.

Then, the result graph G is a causal diagram conforming toM.

Proof. We need to show that G andM have the same ancestral relations, and the same conditional independence relations.

(① G andM have the same ancestral relations). This is evident, as each directed edge is added to G if and only if it also
exists inM.

(② G andM encode the same independence relations). The graphs G andM differ only in the bidirected edges added to
G corresponding to invisible edges inM. Thus, it suffices to show that these additional bidirected edges added to G do not
encode any additional independence between variables. Therefore, we need to show that these edges do not create any new
uncovered colliders.

Consider a bidirected edge A↔ B added to G in Step 3. For this added edge to create a collider, there must be either a
directed edge incoming to A (i.e., C → A↔ B), or bidirected edge incoming to A (i.e., C ↔ A↔ B) in G. In both cases,
B and C are adjacent inM, since A→ B is invisible inM by Lem. 19. Therefore, this collider at A does not introduce
any new independence.
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Now consider a bidirected edge A↔ B added to G in Step 4. The previous argument can be reused here to argue that this
edge does not encode any new independence, since we add only one bidirected among outgoing directed edges from A. For
clarity, suppose that we have a MAGM = ⟨A→ B,A→ B,A→ D⟩ where B,C, and D are mutually not adjacent inM.
Adding at most one of A↔ C, A↔ B, or A↔ D does not introduce a new collider at A, thereby preserving conditional
independence.

Let G be the causal diagram constructed following Lem. 34. We will prove that X is a POMIS with respect to [[G,Y ]]. Let X
be any variable in X. Then X is a parent of some T ∈ MUCT(M,Y ,X) inM. It suffices to show that T ∈ MUCT(GX,Y )
since this means that X is a parent of a member of MUCT(GX,Y ), and is therefore in IB(GX,Y )11.

Let TG ≜ MUCT(G,Y ) and TM ≜ MUCT(M,Y , ∅). We will show that TM ⊆ TG . Let T be a node in TM. We know
such a node always exists because Y is in both TG and TM. LetH ≜ G[An(Y )G ] and N ≜M[An(Y )M]. SinceM and
G share the same skeleton and the same ancestral relations among vertices, it follows that An(Y )M = An(Y )G , implying
V(H) = V(N ).

(① If W ∈ PC(T )N , then W ∈ TG). Suppose that another node W is in the same pc-component of T in N , i.e.,
W ∈ PC(T )N . This implies that there exists a path between T and W in N such that (i) all non-endpoint nodes along the
path are colliders, and (ii) none of the edges are visible.

For all directed edges U → V along this path, if there does not exist an edge U → Z (̸= V ) in N , a bidirected edge
U ↔ V is added to G in Step 3. Consequently, T and W are in the same c-component inH.

Otherwise, if there is some directed edge U → V along the path for which there exists U → Z (̸= V ), then from Step
4, we know that one of these outgoing edges from U will have a corresponding bidirected edge inH which adds U to
TG . Since MUCT is closed under descendants, all descendants of U are also included in MUCT as well.

This logic applies along the entire path, ensuring that T ∈ TG ⇒W ∈ TG .

(② If W ∈ De(T )N , then W ∈ TG). Now, suppose that W is a descendant of T in N , i.e., W ∈ De(T )N . Then W is a
descendant of T inH as well, and so we have T ∈ TG ⇒W ∈ TG .

(① + ② implies TM ⊆ TG). Thus, we have shown that any node which can be shown to be in TM can also be shown to be
in TG , and therefore TM ⊆ TG .

It can be applied to show that MUCT(M,Y ,X) ⊆ MUCT(GX,Y ), as we can operate overM\X and G \X instead ofM
and G, respectively. Thus, we have that T ∈ MUCT(M,Y ,X) implies T ∈ MUCT(GX,Y ). Therefore, we can conclude
that IB(GX,Y ) = X holds.

Proposition 7. Let P be a PAG over the set of variables V. A set X ⊆ V \ {Y } is a POMIS relative to [[P,Y ]] if and only
if there exists a MAGM conforming to P such that X is a POMIS relative to [[M,Y ]].

Proof. (If) Suppose X is a POMIS relative to [[M,Y ]] for some M conforming to P . Then there exists an SCM S
conforming toM such that µx∗ > ∀W∈DM,Y \{X}µw∗ . Since any SCM conforming toM also conforms to P , the SCM
also conforms to P , the SCM S also conforms to P , and thus X is a POMIS relative to [[P,Y ]].

(Only if) Let X be a POMIS relative to [[P,Y ]]. Then there exists an SCM S conforming to P such that µx∗ >
∀W∈DP,Y \{X}µw∗ . Let G be the causal diagram associated with the SCM S. Then, there exists a MAG M repre-
senting G that corresponds to P with X as a POMIS relative to [[M,Y ]], since PP,Y ⊆ DP,Y . This concludes the proof for
this direction.

Proposition 8. Let QX be a PMG representing MAGs where X is a MIS with respect to Y . Then, the following properties
hold in QX, for X ∈ X:

11For convenience, we denote MUCT and IB relative to [[G,Y ]] as MUCT(G,Y ) and IB(G,Y ), respectively.
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1. Every uncovered proper possibly-directed path from X to Y relative to X ends with an arrowhead (>).

2. If X is adjacent to Y , then the edge between X and Y is a directed edge.

Proof. (First condition). For the sake of contradiction, suppose that there exists an uncovered path ending with a tail mark
at Y in a MAGM ∈ [QX]. This implies the path must take the form X ← · · · ← Y inM. Since X is a MIS relative to
[[M,Y ]], there exists a directed path from X to Y inM, which would introduce a directed cycle, leading to a contradiction.

(Second condition). We will first show X ∗−∗Y forms X ∗→ Y in QX, and then demonstrate that it must be X → Y
by proving that X ↔ Y leads to a contradiction. For the sake of contradiction, assume that there exists X ← Y in a
MAGM∈ [QX]. InM, any directed path from X to Y would violate the ancestral property, resulting in a contradiction.
Similarly, assume that there exists X ↔ Y in a MAGM ∈ [QX]. This configuration would also violate the ancestral
property by introducing an almost directed cycle, which leads to a contradiction.

Proposition 9. Let Q∗
X be a PMG which satisfies the conditions in Prop. 8 and the orientation completeness. For every

MAGM∈ [Q∗
X], if X is a MIS relative to [[M,Y ]], then there exists a PMG Qi

X representingM such that the following
conditions are satisfied:

1. Every circle mark around nodes X∪{Y } inQX is oriented as either a tail (−) or an arrowhead (>) inQi
X according

to valid local transformations.

2. Every X ∈ X is an ancestor of Y in Qi
X.

3. Qi
X is closed under orientation rules.

Proof. The first and third conditions are satisfied by the soundness and completeness of valid local transformations (Thm. 8).
Furthermore, since X is a DMIS with respect to [[P,Y ]], the second condition is also satisfied.

Theorem 5 (soundness and completeness). IsPOMIS returns True if and only if there exists a causal diagram G conforming
to P such that X is a POMIS relative to [[G,Y ]].

Proof. (IsPOMIS returns True ⇒ ∃G such that IB(GX,Y ) = X). Suppose that IsPOMIS returns True. Then, there
is a PMG Qi

X satisfying IB(Qi
X,Y ,X) = X. We will demonstrate that there exists a MAG M ∈ [Qi

X] such that
IB(M,Y ,X) = X by constructing such a MAG. To do so, consider the following lemma:

Lemma 35. Let Qi
X be a PMG in Alg. 1. LetM be the graph resulting from the following procedure applied to Qi

X.

Step 1. Orient partial directed edges (◦→ ) as directed edges (→).

Step 2. Consider A ∗→ B in Qi
X. Let TX

M ≜ MUCT(M,Y ,X). If B is contained in TX
M, orient the circle

component including A as a DAG where each circle edge involving A in Qi
X corresponds to a directed edge

outgoing from A inM (i.e., A◦−◦V corresponds to A→ V ).

This step is repeated with the updated TX
M ← MUCT(M,Y ,X) as long asM remains unchanged.

Step 3. Orient remaining circle component into a DAG with no unshielded colliders.

Then, the resulting graphM is a MAG conforming to Qi
X.

Proof. The construction follows Lemmas 6 and 12, and the fact that every circle component can be oriented independently
by Lem. 31.

Now, we will show that the MAG M constructed according to Lem. 35 satisfies IB(M,Y ,X) = X. Let X be any
node in IB(Qi

X,Y ,X). Then, X is a parent of some TX ∈ MUCT(Qi
X,Y ,X) in Qi

X. By Lem. 24, there exists an
uncovered possibly-directed path TX ◦−◦ · · · ◦−◦T ∗

X
?→ · → · · · → Y . Due to the balanced property in Lem. 31 a path

X → T ∗
X

?→ · → · · · → Y exists in Qi
X, which corresponds to X → T ∗

X → · · · → Y in M by construction (see
Step 1). Therefore, we have that for any nodes X ∈ X, X and T ∗

X are included in An(Y )M. Our goal is to show that
T ∗
X ∈ MUCT(M,Y ,X) since this means X ∈ IB(M,Y ,X).
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For convenience, we denote TM = MUCT(M,Y ,X) and TQi
X

= MUCT(Qi
X,Y ,X). Let N ≜ M[An(Y )M] and

H ≜ Qi
X[PossAn(Y )Qi

X
]. Suppose that T is a node such that T ∈ TQi

X
∩ An(Y )M and T ∈ TM. We know such a node

exists, as Y is in both TM and TQi
X
∩ An(Y )M.

(① If W ∈ PC(T )H[An(Y )M], then W ∈ TM). Suppose that another node W is in the same pc-component of T in
H[An(Y )M]. This implies that there exists a path between T and W such that (i) all non-endpoint nodes along the path are
colliders, and (ii) none of the edges are visible, i.e., T ∗→ · ↔ · · · ↔ · ←∗W inH[An(Y )M].

For all edges U ?→ V along this path, the edges correspond to directed edges U → V in N . If there are no circle
edges with U inH, the edges remain invisible in N since orienting a tail mark alone does not introduce any visible
edges.

Otherwise, if there are any circle edges U ◦−◦Z inH that correspond to U → Z in N , no additional visible edges are
introduced. When the edges correspond to U ← Z in N , U would already have been included in TM, which in turn
ensures that V be included in TM.

(② If W ∈ PossDe(T )H[An(Y )M], then W ∈ TM). This means that there exists an uncovered possibly-directed path from
T to W in H[An(Y )M] by Lem. 28. According to our construction, there is a node S ∈ TM (it could be T ) in the same
bucket as T and W such that all nodes in the bucket are descendants of S inM. Since W ∈ De(S)M and S ∈ TM, we
have W ∈ TM.

(① + ②). Thus, we have shown that any node in TQi
X
∩ An(Y )M can also be shown to be in TM, and therefore we can get

T ∗
X ∈ TM.

The remaining task is to prove that W ≜ IB(M,Y ,X) \ IB(Qi
X,Y ,X) is empty. For the sake of contradiction, consider

any vertex W ∈W. Then, there exists a node TW ∈ TM where W ∈ Pa(TW )M. Note that TW ∈ TQi
X
∩ An(Y )M holds

(see the proof of the reverse direction). If W → TW is invisible, then W is included in TM, leading to a contradiction
for W ∈ IB(M,Y ,X). If W → TW is visible in bothM and Qi

X, then we can find a visible edge W → T ∗
W satisfying

W → T ∗
W

?→ · · · · → Y in Qi
X corresponding to W → T ∗

W → · · · → Y inM by Lemmas 24 and 27. This implies
W ∈ IB(Qi

X,Y ,X), resulting in a contradiction. If W → TW appeared as an invisible edge, either ◦−◦ or ◦→ , W → T ∗
W

should also appear as an invisible edge by our construction (see Step 2). Therefore, we conclude the proof of the soundness
of IsPOMIS.

(IsPOMIS returns False ⇒ ∄G such that IB(GX,Y ) = X). Let G be a causal diagram consistent withM. Suppose that X
is a POMIS relative to [[G,Y ]]. Then, we have X = IB(M,Y ,X). Let Qi

X be a PMG representingM. Moreover, we have
that An(Y )M ⊆ PossAn(Y )Qi

X
holds by Lem. 28.

Let X be any variable in IB(M,Y ,X). Then, X is a parent of some TX ∈ MUCT(M,Y ,X) inM. Furthermore, this
appears in Qi

X by the construction of IsPOMIS in Alg. 1 (outgoing edges from X are determined in Qi
X). By Lem. 24,

there exists an uncovered possibly-directed path TX ◦−◦ · · ·T ′
X

?→ · → · · · → Y in Qi
X. Due to Lemmas 20 and 31,

the path X → T ∗
X → · → · · · → Y exists in Qi

X. Now we will show that T ∗
X ∈ MUCT(Qi

X,Y ,X) since this implies
X ∈ IB(Qi

X,Y ,X).

Let TM ≜ MUCT(M,Y ,X) and TQi
X

≜ MUCT(Qi
X,Y ,X). Let N ≜ M[An(Y )M] and H ≜ Qi

X[PossAn(Y )Qi
X
].

Suppose that T is a node satisfying T ∈ TQi
X
∩ An(Y )M and T ∈ TM. We know such a node exists since Y is in both

TM and TQi
X
∩ An(Y )M.

(If W ∈ TM, then W ∈ TQi
X
∩ An(Y )M). Since any invisible edges inM correspond to invisible ones in Qi

X, we have
W ∈ PCN (T ) implies W ∈ TQi

X
∩ An(Y )M according to Lem. 30. Furthermore, we know that W ∈ De(T )N implies

W ∈ PossDe(T )H[An(Y )M] by Lem. 28. Therefore, we get that W ∈ TQi
X
∩ An(Y )M. Thus, we have shown that any node

in TM can also be shown to be in TQi
X
∩ An(Y )M, and therefore T ∗

X ∈ TQi
X

.

The remaining task is to prove that W ≜ IB(Qi
X,Y ,X) \ IB(M,Y ,X) is empty. For the sake of contradiction, consider

any vertex W ∈W. Then, there exists a node TW ∈ TQi
X

where W ∈ Pa(TW )Qi
X

. If W → TW is invisible in Qi
X, then

W is included in TQi
X

, leading to a contradiction for W ∈ IB(Qi
X,Y ,X). If W → TW is visible in Qi

X, it is also visible
inM, and we can find a visible edge W → T ∗

W satisfying W → T ∗
W → · · · · → Y by Lemmas 24 and 27. This implies

W ∈ IB(M,Y ,X), resulting in a contradiction. Therefore, we conclude the proof of the completeness of IsPOMIS.
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